首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new numerical calculation model for wellbore temperature and pressure for SC-CO2 jet fracturing was proposed in this research. In our model, the impact of tubing, casing, and cement on heat transfer, and the heat generated by fluid friction losses are all taken into consideration. The CO2 physical properties are calculated by the Span–Wagner and Vesovic models. Based on our calculation model, the factors that may affect the wellbore temperature and pressure are discussed. The results indicated that ignoring the influence of the cement sheath thermal resistance on heat transfer would lead to a wellbore temperature higher than the actual value. The wellbore CO2 pressure is always higher than its critical value, but the CO2 temperature at the jet point in some cases is lower than its critical value. The wellbore CO2 temperature is increased with the increase in injection temperature and cement sheath thermal conductivity and the decrease in annulus injection rate and coiled tubing injection rate. However, the decrease in the coiled tubing injection rate and increase in the cement sheath thermal conductivity are the only effective ways to ensure that the CO2 temperature at the jet point exceeds its critical value.  相似文献   

2.
Abstract

The gases with higher heat capacities than those of O2 and N2 cause greenhouse effects. Carbon dioxide (CO2) is the main greenhouse gas associated with global climate change. At the present time, coal is responsible for 30–40% of world CO2 emissions from fossil fuels. There was a higher correlation between the amount of carbon dioxide emission and percentage of carbon in the fuel for all equations. The squares of correlation coefficients were 0.9999, 0.9978, and 0.9995. The gas sensing characteristics of MgO and CaO as the CO2 gas sensors and CO2 emission capacities selected carbonaceous fuels have been investigated. It was found that increasing the percentage of carbon in carbonaceous fuel caused CO2 emission increase. Carbonation is a stabilization of CO2 by solidification process. The availability of a CO2 fixation technology would serve as insurance in case global warming causes severe restrictions on CO2 emissions. In order to prevent rapid climate change, it will be necessary to stabilize CO2 as carbonate by the carbonation process. The carbonation was carried out using MgO and CaO as CO2 sensors. The yield of carbonation increased with increasing temperature. The rate of carbonation conversion sharply increased in the initial 20 min and then reduced and reached a plateau value after about 40 min. The carbonation conversion with MgO is higher than that of CaO.  相似文献   

3.
Industrial waste materials, such as steelmaking slags, appear to be potential raw materials for reducing CO2 emissions by carbonation. The suitability of applying a carbonation route based on acetic acid leaching to produce carbonates from blast furnace slag is presented in this study. The effect of solution pH, temperature, and CO2 pressure on the precipitation of carbonates was experimentally studied. A simple thermodynamic model was used to verify our results. The feasibility of the process was also discussed, addressing energy input requirements and the consumption of chemicals.  相似文献   

4.
In the cyclic carbonation-calcination reaction processes, CaO-based solid sorbents have been substantiated to be the effective sorbents for CO2 capture at high temperature. The carbonation reaction has been depicted the carbonation reaction by several kinetic models. Some kinetic models are capable to calculate the intrinsic carbonation rate in the cyclic carbonation-calcination reaction, but the mathematic equation of those models is basically complicated. In this work, a modified model was proposed to delineate the carbonation reaction in multitudinous carbonation-calcination cycles, and was qualified to characterize the whole progression of carbonation reaction in highly cycled particles. The sharp corner is inexistent simultaneously. Additionally, the mathematic equation of this model is apparent simplified. The disconnected pore size distribution is expressed by the log-normal function, and the time evolution of pore structure was also discussed.  相似文献   

5.
Lime enhanced gasification (LEGS) process based on calcium looping in which CaO is employed as CO2 sorbent is an emerging technology for hydrogen production and CO2 capture. In this work, carbide slag which was an industrial solid waste was utilized as CO2 sorbent in hydrogen production process. Modification of carbide slag by propionic acid was proposed to improve its reactivity. The CO2 capture behavior of raw and modified carbide slags was investigated in a dual fixed-bed reactor (DFR) and a thermo-gravimetric analyzer (TGA). The results show that modification of carbide slag by propionic acid enhances its CO2 capture capacity in the multiple calcination/carbonation cycles. The favorable carbonation temperature and calcination temperature for modified carbide slag are 680–700 °C and 850–950 °C, respectively. Prolonged carbonation treatment is beneficial to CO2 capture of raw and modified carbide slags. The prolonged carbonation for 9 h in the 21st cycle increases the conversions of raw and modified carbide slags in this cycle. And then the carbonation conversions of the two sorbents were also improved in the subsequent cycles. Calcined modified carbide slag shows more porous microstructure compared with calcined raw one for the same number of cycles. Modification of carbide slag by propionic acid increases the surface area, pore volume and pore area. In addition, the volume and area of the pores in 20–100 nm in diameter were improved, which had been proved to be more effective to capture CO2. The microstructure of calcined modified carbide slag favors its higher CO2 capture capacity in the multiple calcination/carbonation cycles.  相似文献   

6.
Sugarcane bagasse is one of the major resources of agricultural biomass waste in the world. In this work, supercritical water gasification characteristics of sugarcane bagasse were investigated. The effect of temperature (600–750 °C), concentration (3–12 wt%), residence time (5–20 min) and catalysts (Raney-Ni, K2CO3 and Na2CO3) on bagasse gasification were studied. A kinetic study on the non-catalytic and Na2CO3 catalytic bagasse gasification was conducted to describe the kinetic information of the bagasse gasification reaction. The results showed that a higher reaction temperature, a lower bagasse concentration and a longer residence time could favor the gasification of bagasse, leading to a higher hydrogen yield. Bagasse was nearly completely gasified at 750 °C without using any catalyst and the carbon gasification efficiency could reach up to 96.28%. The addition of employed catalysts remarkably promoted the bagasse gasification reactivity. The maximum hydrogen yield (35.3 mol/kg) was achieved at 650 °C with the Na2CO3 loading of 20 wt%. The experimental data fitted well with a homogeneous model based on a Pseudo-first-order reaction hypothesis. The kinetic study showed that Na2CO3 catalyst could lower the activation energy Ea of bagasse gasification from 117.88 kJ/mol to 78.25 kJ/mol.  相似文献   

7.
《Applied Energy》2001,69(3):225-238
Cyclic reaction performances of solid reactants for a CaO–CO2 chemical heat-pump designed for upgrading and storing high-temperature thermal energy were studied. Solid reactants composed of CaO as the reactant and CaTiO3 as the inert framework were prepared using the conventional powder method or the metal alkoxide method. Upon experiments of cyclic operation between CaO carbonation and CaCO3 decarbonation at 1023K, the reaction reversibility of the solid reactants with the inert CaTiO3 framework was steady, whereas that of the solid reactant without the inert framework decreased with sintering of the solid particles during cyclic operation. Reaction rates for the first carbonation and the decarbonation of solid reactant prepared using the alkoxide method were about 1.8 and 2.4 times faster, respectively, than for those prepared by the powder method due to the smaller average diameter of reactant particles derived from the alkoxide method.  相似文献   

8.
This study investigates the kinetic modeling and reaction pathway for the thermo-catalytic conversion of methane (CH4) and Carbon dioxide (CO2) over alpha-alumina supported cobalt catalyst. Rate data was obtained from the thermo-catalytic reaction at a temperature range of 923–1023 K and varying CH4 and CO2 partial pressure (5–50 kPa). The rate data was significantly influenced by the changes in the reaction temperature as well as the CH4 and CO2 partial pressure. To estimate the kinetic parameters, the rate data were fitted with five Langmuir-Hinshelwood kinetic models. The discrimination of the kinetic models using different parameters revealed that the Langmuir-Hinshelwood kinetic model with the assumption of CH4 being associatively adsorbed on a single and CO2 being dissociative adsorbed with bimolecular surface reaction best described the rate data. The analysis of the kinetic model using a non-linear regression solver results in activation energies of 15.88 kJ/mol, 36.78 kJ/mol, 65.51 kJ/mol, and 41.08 kJ/mol for CH4 consumption, CO2 consumption, H2 production, and CO production, respectively. The thermo-catalytic reaction was influenced by carbon as indicated by the rate of carbon deposition which was mainly caused by methane cracking. The reaction pathway for the thermo-catalytic conversion of the CH4 and CO2 over the alpha-alumina supported cobalt catalyst can best be described as by CH4 associative adsorption on the alpha-alumina supported cobalt catalyst single site and CO2 dissociative adsorption with bimolecular surface reaction.  相似文献   

9.
The kinetic experiments at various working conditions (ie, temperature: 500°C-900°C, pressure: 1-15 bar, H2O/CH4 ratio [S/C ratio] of 1-2.5, and gas hourly space velocity of 900-1700 1/h) in the presence of LaNiO3 perovskite-type oxide were done to consider and assess the outcome of steam methane reforming (SMR) and to build up its kinetic models depending on Langmuir-Hinshelwood method in a fixed bed reactor. The outcomes demonstrate, the methane conversion, H2 and CO yields and formed CO2 are affected by the working parameters. Elevated temperature is profitable for more methane conversion, H2 and CO yield. While high temperature has a negative effect on mol% of CO2 in outlet products. The high working pressure will not profit SMR respect to CH4 conversion and products distribution. The efficacy of S/C ratio on the CH4 conversion and CO yield depended on temperature range. H2 yield considerably diminishes with an increment in S/C ratio, while the trend was reverse for CO2 value in outlet gas. The accuracy of suggested kinetic model was evaluated by correlation and statistical tests. Outcomes exhibited that the obtained data were well anticipated through the suggested model, owning to presumption of nonideal gas phase and by utilizing reasonable equation of state of PPR78.  相似文献   

10.
The effects of manganese salts including Mn(NO3)2 and MnCO3 on CO2 capture performance of calcium-based sorbent during cyclic calcination/carbonation reactions were investigated. Mn(NO3)2 and MnCO3 were added by wet impregnation method. The cyclic CO2 capture capacities of Mn(NO3)2-doped CaCO3, MnCO3-doped CaCO3 and original CaCO3 were studied in a twin fixed-bed reactor and a thermo-gravimetric analyzer (TGA), respectively. The results show that the addition of manganese salts improves the cyclic carbonation conversions of CaCO3 except the previous cycles. When the Mn/Ca molar ratios are 1/100 for Mn(NO3)2-doped CaCO3 and 1.5/100 for MnCO3-doped CaCO3, the highest carbonation conversions are achieved respectively. The carbonation temperature of 700-720 °C is beneficial to CO2 capture of Mn-doped CaCO3. The residual carbonation conversions of Mn(NO3)2-doped and MnCO3-doped CaCO3 are 0.27 and 0.24 respectively after 100 cycles, compared with the conversion of 0.16 for original one after the same number of cycles. Compared with calcined original CaCO3, better pore structure is kept for calcined Mn-doped CaCO3 during calcium looping cycle. The pore volume of calcined MnCO3-doped CaCO3 is 2.4 times as high as that of calcined original CaCO3 after 20 cycles. The pores of calcined MnCO3-doped CaCO3 in the pore size range of 27-142 nm are more abundant relative to clacined original one. That is why modification by manganese salts can improve cyclic CO2 capture capacity of CaCO3.  相似文献   

11.
An iron-calcium hybrid catalyst/absorbent (Ca–Al–Fe) is developed by a two-step sol-gel method to enhance tar conversion, cyclic CO2 capture and mechanical strength of absorbent for hydrogen production in calcium looping gasification. The developed catalyst/absorbent consists of CaO and brownmillerite (Ca2Fe2O5) with mayenite (Ca12Al14O33) as inert support. Comparing with three candidate absorbents without Ca2Fe2O5 or Ca12Al14O33, cyclic carbonation reactivity and mechanical strength of Ca–Al–Fe are largely promoted. Meanwhile, Ca–Al–Fe approaches the maximum conversion rate of 1-methyl naphthalene (1-MN) with enhanced hydrogen yield around 0.15 mol/(h·g) under reforming conditions of present study. Ca–Al–Fe also shows the largest CO2 absorption and lowest coke deposition. Influences of operation variables on 1-MN reforming are evaluated and recommended conditions can be iron to CaO mass ratio of 10%, reaction temperature of 800 °C and steam to carbon in 1-MN mole ratio of 2.0. Ca–Al–Fe hybrid catalyst/absorbent presents good potential to be applied in future.  相似文献   

12.
Water thermolysis by means of the sodium manganese ferrite cycle for sustainable hydrogen production is reviewed, with particular focus on known elementary chemical processes taking place on solid substrates in the 600–800 °C temperature range. For the purpose, in-situ high temperature x-ray diffraction technique has been utilized to observe structural transformations produced by both temperature and reactive environment. The water-splitting reaction and the regeneration of initial reactants are described as multi-step reactions, in which the role of carbon dioxide, through carbonation and de-carbonation reactions is highlighted. A thermodynamic phase stability diagram is reported for the system MnFe2O4/Na2CO3/CO2.  相似文献   

13.
This paper investigates the industrial production of hydrogen through steam methane reforming (SMR) from both exergy efficiency and CO2 emission aspects. An SMR model is constructed based on a practical flow diagram including desulfurizer, furnace, separation unit and heat exchangers. The influence of reformer temperature (Tr) and steam to carbon (S/C) ratio is analyzed to optimize exergy efficiency and CO2 emission. A clear correlation is obtained between exergy efficiency and CO2 emission. Results also show optimal S/C ratio decreases with Tr. An exergy load distribution analysis which evaluates interactions between the system and its subsystems with parameter variations is employed to find promising directions for efficiency improvement. Results show that the greatest improvement lies in increasing efficiency of furnace without increasing its relative exergy load. Integration of oxygen-enriched combustion (OEC) with SMR is also evaluated. The integration of OEC can increase the system efficiency greatly when the reformer operates above critical point, while in other cases the system efficiency may decrease.  相似文献   

14.
The kinetics of the methane dry (CO2) reforming over the SmCoO3 was investigated in the temperature ranged 973–1073 K by varying the CH4 and CO2 partial pressures. Based on detailed study of the reaction mechanism, a mechanistic model is proposed from which a kinetic model is derived. The mechanistic pattern assumes adsorption of CH4 on reduced Co, followed by methane cracking and carbon deposition. CO2 reacts with Sm2O3 to form Sm2O2CO3 and the oxycarbonates react with carbon to produce CO. The power law and Langmuir–Hinshelwood kinetic model which is established on this mechanism were able to forecast the kinetic results.  相似文献   

15.
《能源学会志》2014,87(3):208-214
Minimum miscible pressure (MMP) is an important indicator to evaluate the miscibility of CO2 with oil, and it is of paramount importance to the implementation of CO2 flooding. In this study, the sensitivities of MMP to its influencing factors were analyzed quantitatively. And the MMP correlations applying for pure and impure CO2–oil in low permeability reservoir were presented. These correlations are conducive to predicting MMP quickly and precisely when limited experimental data are available. In low permeability reservoirs, the main sensitive factors of MMP are reservoir temperature, oil components (C5+ molecular weight, volatiles and intermediates) and the components of injected gas (characterized with pseudo-critical temperature). MMP increases with the volatile/intermediate ratio, especially in the neighborhood of unity and decreases with the pseudo-critical temperature of impure CO2. MMP shows strong sensibility to the pseudo-critical temperature of impure CO2 when the critical temperature is less than that of pure CO2.  相似文献   

16.
This paper examines the average carbonation conversion, CO2 capture efficiency and energy requirement for post-combustion CO2 capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO2 capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO2 capture efficiency. Achieving 0.95 of CO2 capture efficiency without sulfation, 272 kJ/mol CO2 is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO2 for the modified sorbent. The modified limestone possesses greater advantages in CO2 capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO2 from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.  相似文献   

17.
The development of an efficient reactor for hydrocarbons (C2–C4) production through hydrogenation of CO2, requires a deep understanding of the operating conditions effects. Subsequently, a model is proposed to analyze the reaction rates and investigate the sensitivity of hydrocarbons yield and products distribution to the variations of temperature, pressure and space velocity (SV). Besides, Thiele modulus and effectiveness factor are calculated for all of the reactions considered in the model. Results reveal that simultaneous occurrence of both endothermic reverse water gas shift (RWGS) and exothermic Fischer-Tropsch (FT) reactions, may be the main reason of temperature and rate fluctuations at the fixed-bed reactor inlet. In addition, increasing temperature and pressure, and decreasing SV can shift the process to produce more light olefins. Finally, sensitivity analysis demonstrates that reactor behavior is independent of the changes in pressure and SV at high temperature, which is an indication of high temperature dependency of this process. These findings can be effectively employed to achieve a better insight about appropriate operating conditions of hydrocarbons production via hydrogenation of CO2.  相似文献   

18.
Methyl propanoate (MP) pyrolysis in a laminar flow reactor was studied at low pressure (30 Torr) within the temperature range from 1000 to 1500 K. About 30 products were detected and identified in the pyrolysis process using the photoionization mass spectrometry, including H2, CO, CO2, CH3OH, CH2O, CH2CO, C1 to C4 hydrocarbons and radicals (such as CH3, C2H5 and C3H3). Their mole fraction profiles versus temperature were also measured. For the unimolecular dissociation reactions, the rate constants were calculated by high precision theoretical calculations. Based on the theoretical calculations and measured mole fraction profiles of pyrolysis species, a kinetic model of MP pyrolysis containing 98 species and 493 reactions was developed. The model simulates the primary decomposition process well with the calculated rate constants. According to the rate of production analysis, the decomposition pathways of MP and the formation channels of both oxygenated and hydrocarbon products were discussed. It is concluded that the main decomposition pathway is MP → CH2COOCH3 → CH3CO + CH2O → CO.  相似文献   

19.
Methane steam reforming (MSR) is studied experimentally and numerically. The intrinsic kinetics of the reaction are determined using a micro fluidized bed with a catalyst containing more than 50 wt % NiO/α-Al2O3. Intrinsic kinetic models are developed for parallel and serial reaction mechanisms, but the parallel mechanism is found to better match the experimental data. The activation energies for CO and CO2 formation are 81.69 kJ/mol and 59.38 kJ/mol, respectively, and the pre-exponential factors are 316.6 mol/(g h kPa0.85) and 0.00263 mol/(g h kPa3.1), respectively. As the reaction temperature increases, the rate of CO formation increases and that of CO2 decreases. At 800 °C, almost all the CH4 is converted to CO and H2, and the methane conversion rate (XCH4), the hydrogen production rate (YH2), and the CO selectivity (SCO) are 92.28%, 3.34, and 0.99, respectively. The effects of the steam-to-carbon ratio (S/C), inlet velocity, and preheating temperature at different reaction temperatures are simulated using the FLUENT software package. As S/C increases, XCH4 and YH2 increase, but SCO decreases. The higher the reaction temperature, the less S/C promotes XCH4 and YH2. When the reaction temperature is 700 °C and the inlet velocity is 0.2 m/s (residence time is 0.5 s), XCH4 is above 95%, and changes in the inlet velocity strongly influence the formation of CO. With increasing preheating temperature, XCH4, YH2, and SCO all increase gradually.  相似文献   

20.
Exploring cost-efficient electrocatalysts for oxygen evolution reaction (OER) is still a huge challenge in the electrochemical energy conversion technology. In this work, Gallium (Ga)-doped Ni3S2 nanosheet arrays grown on Ti3C2-MXene/nickel foam (Ga–Ni3S2/Ti3C2/NF) have been synthesized by a successive hydrothermal and sulfidization process. The Ga doping modulates the electronic structure of Ni3S2, so tuning the adsorption energies of oxygen intermediate (1OOH). The Ga–Ni3S2/Ti3C2/NF delivers outstanding catalytic activities toward OER with an overpotential of 340 mV at 100 mA cm?2, and exhibits superior electrochemical durability. The excellent OER performance of Ga–Ni3S2/Ti3C2/NF can be ascribed to the 3D sheet arrays morphology and optimized electronic structure. Density functional theory (DFT) calculations also demonstrate that electronic disturbance attributed to Ga doping effectively improves the activity of Ni sites, leading to stronger binding strength of 1OOH intermediate at Ni sites nearby Ga. This study provides insights into the fabrication of advanced electrocatalysts for application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号