首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
郭俊婷  徐阳 《功能材料》2015,(5):5123-5127
采用卷绕型磁控溅射设备在涤纶(PET)针刺毡表面沉积了纳米结构Cu薄膜,利用X射线衍射仪(XRD)对薄膜的组分和结晶状态进行了分析,用原子力显微镜(AFM)分析了不同溅射工艺参数对纳米Cu薄膜微观结构和颗粒直径的影响,并较为系统地分析了溅射功率、工作气压和沉积时间对镀铜PET针刺毡导电性能的影响。结果表明,增大溅射功率,镀铜PET针刺毡导电性和Cu膜均匀性变好,但应控制在6kW以下;随工作气压的增大,薄膜方块电阻先减小后增大,薄膜厚度更加均匀;随着沉积时间的延长,Cu粒子的直径增大,Cu膜的导电性和均匀性明显变好。  相似文献   

2.
室温下射频磁控溅射制备ZnO:Al透明导电薄膜及其性能研究   总被引:1,自引:0,他引:1  
采用射频磁控溅射技术,在室温下,以ZnO:Al2O3(2%Al2O3(质量比))为靶材,在石英玻璃基底上,采用不同工艺条件制备了ZnO:Al(AZO)薄膜。使用扫描电子显微镜观察了薄膜的表面形貌,X射线衍射分析了薄膜的结构,四探针测量仪得到薄膜的表面电阻,轮廓仪测量了薄膜厚度,并计算了电阻率,最后采用分光光度计测量了薄膜的透过率;研究了溅射功率、溅射气压与薄膜厚度对薄膜电阻率及透过率的影响。结果表明:所制备的AZO薄膜具有(002)择优取向,并且发现薄膜厚度对薄膜的光电性能有明显影响,溅射气压和溅射功率对薄膜电学性能有较大影响,但是对薄膜透过率影响不大。当功率为1kW、溅射气压0.052Pa、AZO薄膜厚度为250nm时,其电阻率为8.38×10-4Ω·cm,波长在550nm处透过率为89%,接近基底的本底透过率92%。当薄膜厚度为1125 nm时薄膜的电阻率降至最低(6.16×10-4Ω·cm)。  相似文献   

3.
采用磁控溅射法制备AZO薄膜,研究和讨论了溅射功率、溅射时间和溅射气压3个工艺参数对AZO薄膜光学和电学性能的影响。采用正交优化设计,对3个工艺参数进行优化,测量了透射率和电阻率,以此作为薄膜光电性能的评价指标,通过极差值分析确定了制备薄膜的最佳工艺参数。影响薄膜透射率的最主要因素为溅射气压;影响电阻率的最主要因素为溅射时间。获得制备高透射率低电阻率的AZO薄膜的最佳工艺组合方案为溅射功率为400W、溅射时间为1000s、溅射气压为1.0Pa。将反馈型(BP)神经网络应用于磁控溅射AZO薄膜光学性能(可见光区的平均透射率)和电学性能(电阻率)的研究。输入样品数据对神经网络进行训练,建立AZO薄膜光电性能随溅射参数变化的预测模型。  相似文献   

4.
采用射频磁控溅射技术,在室温下,以ZnO∶Al203(2%Al2O3(质量比))为靶材,在石英玻璃基底上,采用不同工艺条件制备了ZnO∶Al(AzO)薄膜.使用扫描电子显微镜观察了薄膜的表面形貌,X射线衍射分析了薄膜的结构,四探针测量仪得到薄膜的表面电阻,轮廓仪测量了薄膜厚度,并计算了电阻率,最后采用分光光度计测量了薄膜的透过率;研究了溅射功率、溅射气压与薄膜厚度对薄膜电阻率及透过率的影响.结果表明:所制备的AZO薄膜具有(002)择优取向,并且发现薄膜厚度对薄膜的光电性能有明显影响,溅射气压和溅射功率对薄膜电学性能有较大影响,但是对薄膜透过率影响不大.当功率为1kW、溅射气压0.052 Pa、AZO薄膜厚度为250nm时,其电阻率为8.38×10-4Ω·cm,波长在550 nm处透过率为89%,接近基底的本底透过率92%.当薄膜厚度为1125 nm时薄膜的电阻率降至最低(6.16×10-4 Ω·cm).  相似文献   

5.
利用中频脉冲直流磁控溅射法制备了平面ZnO:Al(AZO)透明导电薄膜,研究了沉积压力、衬底温度和溅射功率对AZO薄膜光电性能、薄膜稳定性的影响.结果表明:在较低沉积压力、衬底温度及溅射功率下,可获得具有低电阻率、高透过率、高稳定性的AZO薄膜.  相似文献   

6.
氩气压强对PET基磁控溅射银膜结构及导电性能的影响   总被引:4,自引:0,他引:4  
在室温条件下,采用磁控溅射法在PET纺粘非织造布上制备了纳米Ag薄膜,用原子力显微镜(AFM)表征磁控溅射真空室压强对纳米Ag薄膜结晶状态、粒径的影响;研究了溅射工艺参数与薄膜导电性能之间的关系.实验结果表明:在该实验范围内溅射速率随压强的增大先增大后减小;薄膜方块电阻的变化规律与溅射速率的变化规律一致;薄膜颗粒直径随压强的增大先增大后减小,但在压强大于1.5Pa时,薄膜颗粒直径随压强变化未呈现明显的变化规律.  相似文献   

7.
在室温条件下采用射频磁控溅射法在涤纶平纹机织物表面沉积纳米Cu薄膜,借助原子力显微镜(AFM)观察镀膜前后样品表面变化。通过分别改变镀膜时间、溅射功率和气体压强,研究其对样品透光性和导电性的影响。实验结果表明,经Cu镀层处理的涤纶平纹织物对紫外光和可见光的吸收能力明显优于原样。溅射压强增加,透光性能增强,铜膜方块电阻增加,导电性能减弱;镀膜时间延长和溅射功率增加,样品透射率降低,屏蔽紫外线和可见光效果明显,在溅射时间接近15min和溅射功率增加到120W后,样品屏蔽效果不明显,铜膜方块电阻随溅射功率增加而减小,导电性能增强。  相似文献   

8.
采用射频磁控共溅射法在玻璃衬底上制备出了Al与Sn共掺杂的ZnO(ATZO)薄膜.在固定ZnO∶Al(AZO)靶溅射功率不变的条件下,研究了Sn靶溅射功率对ATZO薄膜的结晶质量、表面形貌、电学和光学性能的影响.结果表明,制备的ATZO薄膜是六角纤锌矿结构的多晶薄膜,具有c轴择优取向,而且表面致密均匀.当Sn溅射功率为5W时,330 nm厚度的ATZO薄膜的电阻率最小为1.49×10-3 Ω·cm,比AZO薄膜下降了22%.ATZO薄膜在400~900 nm波段的平均透过率为88.92%,禁带宽度约为3.62 eV.  相似文献   

9.
气溶胶辅助化学气相沉积制备Al掺杂ZnO透明导电薄膜   总被引:2,自引:0,他引:2  
采用气溶胶辅助化学气相沉积(AACVD)法在玻璃衬底上制备了Al掺杂ZnO(AZO)薄膜. 研究了Al掺杂(2at%~8at%)对ZnO薄膜结构及光电性能的影响. 利用XRD、SEM、EDAX、紫外可见分光光度计等手段对样品进行测试. 结果表明, 制备的所有AZO薄膜均具有纤锌矿结构, 不具有沿c轴方向的择优取向, XRD图谱中未观察出Al的相关分相. 在可见光范围内, AZO薄膜的平均透过率大于72%, 光学禁带宽度随Al掺杂量的增加而变窄. 同时根据四探针技术所得的数据得知: Al的掺杂导致薄膜方块电阻的变化, 随着Al掺杂量的增加, 方块电阻有明显变小的现象, 掺杂6at%Al的AZO薄膜具有最低方块电阻(18Ω/□).  相似文献   

10.
基于非平衡磁控溅射技术在浮法玻璃表面沉积了系列掺铝氧化锌(AZO)和氧化铟锡(ITO)薄膜,从电磁隐身角度出发,确定了两种薄膜的电磁散射测试方法和分析方法,并测试了10、15 GHz的HH、VV的极化雷达散射截面(RCS)曲线,以试验数据为基础,研究了方块电阻对两种薄膜电磁散射的影响特性。试验结果表明,AZO与ITO散射曲线具有相似性,AZO散射曲线震荡性更明显;两种薄膜RCS增益随着方块电阻的增大而变小,AZO和ITO的RCS增益曲线均震荡性降低;方块电阻合适时,两种薄膜均可实现座舱玻璃隐身。  相似文献   

11.
Aluminum-doped ZnO (AZO) transparent conducting films were deposited on glass substrates with and without intrinsic ZnO (i-ZnO) buffer layers by a home made and low cost radio-frequency (RF) magnetron sputtering system at room temperature in pure argon ambient and under a low vacuum level. The films were examined and characterized for electrical, optical, and structural properties for the application of CIGS solar cells. The influence of sputter power, deposition pressure, film thickness and residual pressure on electrical and optical properties of layered films of AZO, i-ZnO and AZO/i-ZnO was investigated. The optimization of coating process parameters (RF power, sputtering pressure, thickness) was carried out. The effects of i-ZnO buffer layer on AZO films were investigated. By inserting thin i-ZnO layers with a thickness not greater than 125 nm under the AZO layers, both the carrier concentration and Hall mobility were increased. The resistivity of these layered films was lower than that of single layered AZO films. The related mechanisms and plasma physics were discussed. Copper indium gallium selenide (CIGS) thin film solar cells were fabricated by incorporating bi-layer ZnO films on CdS/CIGS/Mo/glass substrates. Efficiencies of the order of 7–8% were achieved for the manufactured CIGS solar cells (4–5 cm2 in size) without antireflective films. The results demonstrated that RF sputtered layered AZO/i-ZnO films are suitable for application in low cost CIGS solar cells as transparent conductive electrodes.  相似文献   

12.
采用直流磁控溅射方法在玻璃衬底上室温生长了AZO/Cu双层薄膜,Cu层厚度控制在9nm,研究了AZO层厚度对薄膜电学和光学性能的影响。当AZO层厚度为20~80nm时,AZO/Cu双层薄膜具有良好的综合光电性能,方块电阻为12~14Ω/sq,可见光平均透过率为70~75%,品质因子为2×10-3~5×10-3Ω-1。AZO/Cu双层薄膜可以观察到Cu(111)和ZnO(002)的XRD衍射峰。通过退火研究表明,AZO/Cu双层薄膜的光电性能可在400℃下保持稳定,具有良好的热稳定性。本研究制备的透明导电AZO/Cu双层薄膜具有室温制程、综合光电性能良好、结晶性能较好、稳定性高的优点,可以广泛应用于光电器件透明电极及镀膜玻璃等领域。  相似文献   

13.
We have prepared aluminum-doped Zinc oxide (AZO) thin films on glass substrates by rf magnetron sputtering technique using ZnO ceramic target in pure argon gas with different aluminum concentrations. The bandgap of the ZnO films slightly widens with increase in Al content and the lowest sheet resistance of AZO films with Al concentration of 4.3 at.% was obtained. The effects of post-annealing treatment on structural, electrical and optical properties of the AZO thin films were investigated. Using AZO thin film with 4.3 at.% Al as the transparent substrate, a titanium dioxide based dye-sensitized solar cell was constructed and a solar to electrical energy conversion efficiency of 2.9% was achieved under AM 1.5 solar simulated sunlight.  相似文献   

14.
AZO/Cu/AZO multilayer films were prepared on glass substrate by radio frequency magnetron sputtering technology. The prepared films were investigated by a four-point probe system, X-ray diffraction, optical transmittance spectra, scanning electron microscope, atomic force microscopy and Fourier transform infrared spectroscopy. The results showed that Cu inner layer started forming a continuous film at the thickness around 11 nm. The prepared AZO/Cu/AZO samples exhibited the visible transmittance of 60–80 % and sample with 15 nm Cu inner layer showed the highest infrared reflection rate of 67 % in FIR region and the lowest sheet resistance of 16.6 Ω/sq. The proper visible transmittance and infrared reflection property of the AZO/Cu/AZO multilayer film make it a promising candidate for future energy conservation materials.  相似文献   

15.
Cost efficient and large area deposition of superior quality Al2O3 doped zinc oxide (AZO) films is instrumental in many of its applications, including solar cell fabrication due to its numerous advantages over indium tin oxide (ITO) films. In this study, AZO films were prepared by a highly efficient rotating cylindrical direct current (DC) magnetron sputtering system using an AZO target, which has a target material utilization above 80%, on glass substrates in argon (Ar) ambient. A detailed analysis on the electrical, optical, and structural characteristics of AZO thin films was performed for the solar cell, as well as display applications. The properties of films were found to critically depend on deposition parameters, such as sputtering power, substrate temperature, working pressure, and film thickness. A low resistivity of ~ 5.5 × 10− 4 Ω cm was obtained for films deposited at 2 kW, keeping the pressure, substrate temperature and thickness constant at 3 mTorr, 230 °C and ~ 1000 nm respectively. This was due to an increase in carrier mobility and large grain size. Mobility is found to be controlled by ionized impurity scattering within the grains, since the mean free path of carriers is much smaller than the grain size of the films. The AZO films showed a high transparency of ~ 90% in the long wavelength region. Our results offer a cost-efficient AZO film deposition method that can fabricate films with significant low resistivity and high transmittance that can be applied in thin-film solar cells, as well as thin film transistor (TFT) and non-volatile memory (NVM).  相似文献   

16.
This study has investigated the influence of the radio frequency (rf) power and working pressure on the properties of indium tin oxide (ITO) thin films, which were prepared by long-throw rf magnetron sputtering technique at room temperature. For 200 nm thick ITO films grown at room temperature in pure argon pressure of 0.27 Pa and sputtering power of 40 W, sheet resistance was 26.6 ?/sq. and transmittance was higher than 88% (at wavelength 500 nm). An X-ray diffraction analysis of the samples deposited at r...  相似文献   

17.
Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62?×?1019 to 8.21?×?1019 cm?3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6?×?10?4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19?×?104 (Ω cm)?1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.  相似文献   

18.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

19.
Al-doped zinc oxide (AZO) thin films were deposited onto flexible polyethylene terephthalate substrates, using the radio frequency (RF) magnetron sputtering process, with an AZO ceramic target (The Al2O3 content was about 2 wt.%). The effects of the argon sputtering pressure (in the range from 0.66 to 2.0 Pa), thickness of the Al buffer layer (thickness of 2, 5, and 10 nm) and annealing in a vacuum (6.6 × 10− 4 Pa), for 30 min at 120 °C, on the morphology and optoelectronic performances of AZO films were investigated. The resistivity was 9.22 × 10− 3 Ω cm, carrier concentration was 4.64 × 1021 cm− 3, Hall mobility was 2.68 cm2/V s and visible range transmittance was about 80%, at an argon sputtering pressure of 2.0 Pa and an RF power of 100 W. Using an Al buffer decreases the resistivity and optical transmittance of the AZO films. The crystalline and microstructure characteristics of the AZO films are improved by annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号