首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standard airfoils historically used for wind and hydrokinetic turbines had maximum lift coefficients of around 1.3 at stall angles of attack, which is about 12°. At these conditions, the minimum flow velocities to generate electric power were about 7 m/s and 2 m/s for the wind turbine and the hydrokinetic turbine cases, respectively. In this study, NACA4412-NACA6411 slat–airfoil arrangement was chosen for these two cases in order to investigate the potential performance improvements. Aerodynamic performances of these cases were both numerically and experimentally investigated. The 2D and 3D numerical analysis software were used and the optimum geometric and flow conditions leading to the maximum power coefficient or the maximum lift to drag ratio were obtained. The maximum lift to drag ratio of 24.16 was obtained at the optimum geometric and flow parameters. The maximum power coefficient of 0.506 and the maximum torque were determined at the tip speed ratios of 5.5 and 4.0 respectively. The experimental work conducted in a towing tank gave the power coefficient to be 0.47 which is about %7 lower than the numerical results obtained. Hence, there is reasonable agreement between numerical end experimental values. It may be concluded that slat-hydrofoil or airfoil arrangements may be applied in the design of wind and hydrokinetic turbines for electrical power generation in lower wind velocities (3–4 m/s) and current velocities (about 1 m/s).  相似文献   

2.
为获得相对平稳且非负的启动力矩,针对三叶片Savonius风力机开展研究。首先对比研究两叶片和三叶片Savonius风力机的启动性能和输出功率特性。在此基础上,针对其主要的结构参数重叠比开展研究。针对三叶片的结构特点,提出重叠比和净重叠比的定义方式,设置9组不同净重叠比,范围在0~0.36(重叠比范围0.14~0.50)之间。利用数值模拟和风洞试验相结合的方法,研究在不同风速下重叠比对Savonius风力机启动力矩以及输出功率性能的影响。结果表明:净重叠比可消除反向启动力矩,并提升三叶片Savonius风力机的启动性能,平均启动力矩系数最高提升147.06%。净重叠比在0.06~0.11范围内时,对风力机的输出功率有提高作用。  相似文献   

3.
A very small wind turbine system for multi-purposes was developed and its performance was reported in this paper. The rotor diameter of the turbine is 500 mm. The tests of the energy output, turbine speed, power coefficient, and torque of turbine were carried out for a wide rage of free stream velocity. The flow around the wind turbine and the influence of the turbulence were investigated with a particle image velocimetry. Experimentally obtained power coefficient was 0.4 in maximum and 0.36 in the rated running condition, respectively. The tip speed ratio corresponding to the optimum driving condition was 2.7. Comparing with the other commercial turbines, the performance was excellent at a slow turbine speed. By the flow visualization and PIV measurement around the wind turbine, the approaching flow velocity and the accelerated flow field passing the blade tip was obtained. It was confirmed that the actual flow passed through the blades was about 20% slower than the ideal flow. Tip vortex shed from the blade tip was also visualized clearly.  相似文献   

4.
以2 MW风力机为研究对象,基于实际风力机状态(SCADA)系统大数据,选取叶片正常状态和覆冰状态下的风速、功率、桨距角和偏航角数据,采用核密度-均值数据处理方法,得到叶片覆冰状态监测基准值及其定量表达式。同时,根据叶片不同覆冰时期桨距角和功率值随风速的变化情况,提出叶片覆冰状态分级诊断标准。应用结果表明,根据桨距角随风速的变化情况可判断在叶片覆冰过程中机组最大功率追踪情况以及气动性能损失情况,根据风速-功率值分布情况可较准确地判别叶片的覆冰状态。  相似文献   

5.
The effect of blade number on performance of drag type vertical axis wind turbine (VAWT) is studied by Ansys numerical simulation, it involves 3-blade, 5-blade and 6-blade VAWTs. The optimized width of blade for each VAWT at maximum power efficiency is obtained, and simulation for the wind turbine with different number of blade is conducted for the VAWTs with turbine radius of 2 m at the inlet wind speed 8 m/s. By simulations, it gets the evolution curve of torque with respect to time, and the cyclical characteristics for these wind turbines. The results show that the maximum power efficiency and the stability of the wind turbine increase with the number of blade of the wind turbine, however the optimal d/D decreases with the number of blade of the wind turbine. The maximum power efficiencies are 20.44, 24.30 and 26.82% for 3-blade, 5-blade and 6-blade wind turbines, and the correspondingly optimal d/D are 0.66, 0.40 and 0.35, respectively. While the optimal rotational rate of turbine decreases with blade number.  相似文献   

6.
为提高低风速地区的风能利用率,研究风轮实度对低风速风电机组气动性能的影响。考虑影响风轮实度因素(叶片数量、弦长及安装角),设计2组不同弦长叶片与可调安装角轮毂。安装角改变时不仅会引起实度变化,还会使叶尖速比发生改变。通过车载试验验证安装角不同时对风轮气动性能的影响主要与叶尖速比相关。根据不同风轮表面压力分布数值模拟结果得出:相同风速下,弦长由叶根到叶尖逐渐增大的叶片更易启动。相同条件下,试验机组输出功率与数值模拟机组输出功率最大相差5.37%,说明数值模拟结果可信。随着风轮实度的增加,风速5 m/s时,其风能利用系数呈增大趋势,风速8 m/s时,其风能利用系数呈减小趋势,两趋势相交时实度为25.38%,得出该实度下风轮气动性能较优,即可得到适合低风速地区的风轮实度。  相似文献   

7.
采用计算流体力学方法(CFD)针对垂直轴风力发电机,开展简化的二维绕流特性研究。首先,基于开放型转子和增强型转子,研究网格节点数和壁面y+、计算时间步长和湍流模型等的变化对计算结果的影响,对计算模型和方法进行确认。随后,计算分析增强型垂直轴风力机与开放型垂直轴风力机的特性。结果表明,与开放性垂直轴风力发电机相比,增强型垂直轴风力发电机的功率系数和转矩系数有明显增加,且达到最大值的位置向叶尖速比增大的方向移动。然后对增强型垂直轴风力机发电机在不同来流风速下进行计算,发现增强型垂直轴风力发电机的转子转矩随来流风速增加,而转矩系数和功率系数与来流风速无关。最后,针对定子叶片在不同的方向开展计算研究。结果表明,定子叶片在不同方向时,增强型垂直轴风力机的转子转矩不同,且转矩到达峰值的位置也不同;在当前3个方向角中,叶片处于0°方向角时风力机具有最高的转矩系数,即具有最佳的功率系数。  相似文献   

8.
Micro-wind turbine are now specially designed for rural or urban environment and one of the main advantages of such turbine is that it can be propelled by a wind speed as low as 3 m/s. However, due to terrain roughness in urban environments wind flow is reduced compared to open spaces reducing power output and increasing payback time on capital investment. Well mounting turbines in urban areas may provide the perfect opportunity for onsite generation from wind power. In this paper, we investigate the performance of a micro-wind turbine in a complex urban area and show that due to long time period and very subtile onsite measurements the ideal position for the wind turbine can be determined. Well measured data, wind speed, power output at this particular location are approximated by the Weibull function. The considered model is tested and validated at an urban landscape location in Metz City, France, where an anemometry is positioned at adjacent to the turbine and the instrumentation is positioned specific to its surrounding location and, record wind turbine data thanks to real time wireless communications. Technical data including wind speed and output power were analyzed and reported allowing to provide an reliable estimation of the wind energy potential in an urban location.  相似文献   

9.
This study examines the effect of different wind turbine classes on the electricity production of wind farms in three areas of Australia, which present low, low to medium, and medium to high wind potential: Gingin, Armidale, and Gold Coast Seaway. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from six different manufacturers have been used. For each manufacturer, at lest two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC I, IEC II and/or IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (higher IEC class) in all three locations, in terms of energy production. This improvement is higher for the locations with lower and medium wind potential (Gingin and Armidale), and varies from 5% to 55%. Moreover, this study investigates the economical feasibility of a 30 MW wind farm, for all combinations of site locations and wind turbine models.  相似文献   

10.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.  相似文献   

11.
The performance of individual wind turbines is crucial for maximum energy yield, however, their performance is often reduced when turbines are placed together in an array. The wake produced by the rotors interacts with downstream turbines, resulting in a reduction in power output. In this paper, we demonstrate a new and faster modelling technique which combines actuator disc theory, modelled using wind tunnel validated Computational Fluid Dynamics (CFD), and integrated into full rotor CFD simulations. This novel hybrid of techniques results in the ability to analyse performance when simulating various array layouts more rapidly and accurately than using either method on its own.It is shown that there is a significant power reduction from a downstream turbine that is subjected to the wake of an upstream turbine, and that this is due to both a reduction in power in the wind and also due to changes in the aerodynamics. Analysis of static pressure along the blade showed that as a result of wake interactions, a large reduction in the suction peak along the leading edge reduced the lift generated by the rotor and so reduced the torque production and the ability for the blade to extract energy from the wind.  相似文献   

12.
In this study, the hydrogen production potential and costs by using wind/electrolysis system in P?narba??-Kayseri were considered. In order to evaluate costs and quantities of produced hydrogen, for three different hub heights (50 m, 80 m and 100 m) and two different electrolyzer cases, such as one electrolyzer with rated power of 120 kW (Case-I) and three electrolyzers with rated power of 40 kW (Case-II) were investigated. Levelised cost of electricity method was used in order to determine the cost analysis of wind energy and hydrogen production. The results of calculations brought out that the electricity costs of the wind turbines and hydrogen production costs of the electrolyzers are decreased with the increase of turbine hub height. The maximum hydrogen production quantity was obtained 14192 kgH2/year and minimum hydrogen cost was obtained 8.5 $/kgH2 at 100 m hub height in the Case-II.  相似文献   

13.
The energy yield of wind turbines is to a large extent determined by the performance of the Maximum Power Point Tracking (MPPT) algorithm. Conventionally, they are programmed to maximize the turbines power coefficient. However, due to losses in the generator and converter, the true optimal operating point of the system shifts. This effect is often overlooked, which results in a decreased energy yield. Therefore, in this paper, the wind turbine system is modeled including the dominant loss components to investigate this effect in detail. By simulations and experiments on a wind turbine emulator, it is shown that the location of the maximum power point is significantly affected for low wind speeds. For high wind speeds, the effect is less pronounced. The parameter of interest is the increase in yearly energy output with respect to the classical MPPT method, which is calculated in this paper by including a Rayleigh wind speed distribution. For typical average wind speeds, the energy yield can increase with 1–2%. There is no cost associated with operating the turbine in the overall MPP, making it worthwhile to include this effect. The findings are implemented in an MPPT algorithm to validate the increased performance in a dynamic situation.  相似文献   

14.
The air discharged from ventilation systems is a high potential wind resource for generating electricity in countries where wind speed is unreliable or weak, such as in Thailand. The air discharged from ventilation systems produces consistent and high-speed wind when benchmarked against natural wind. However, the limitations of conventional wind turbines are that they have negative impacts on the ventilation system and are inconvenient to install in many areas. The innovative shaftless horizontal axis wind turbine (SHWT) introduced in this article has been designed to close the gap between the wind source and the conventional wind turbines in this process. The concept design shows how it could be mounted next to sources of waste wind, requiring only a small space for installation. An open hole is provided to enable airflow to be discharged into the environment. This SHWT has high market potential for utilizing man-made wind to generate electricity from an alternative source which supports sustainable energy development. The purpose of this study is to demonstrate the concept design of a prototype SHWT used for energy recovery from the discharged air of a ventilation system. How the rotor and stator design of the SHWT optimize wind turbine performance and minimize the negative effects on the ventilation system efficiency are also addressed in this study. The performance of the SHWT is demonstrated in a lab-scale test using the type of propeller fan that is generally applied in many sectors in Thailand. The results showed that the SHWT was successful in generating electricity and produced minimal negative effects on the ventilation system's performance. The maximum power output of the prototype SHWT is 7.4 W at a rotational speed of 1644 rpm using eight sets of magnets and 5.1 m/s wind speed. The maximum wind turbine efficiency is 51%. However, it still requires further optimization to enhance the SHWT performance.  相似文献   

15.
风力机的选型是风电场建设的重要内容,它对风电场建设造价、投产后的发电量以及运行维护成本等有直接影响。文章在给定风资源的情况下,综合考虑风电场的容量系数和实际发电量,以风力机性能指数作为选型的依据,针对采用常规方法进行风力机参数线性化求解的缺陷,采用智能化的改进粒子群算法对风力机参数进行寻优。与常规计算方法相比,该方法寻得的风力机性能指数更优。结合具体实例计算候选机型的风速加权标准差,选出最优风力机。该研究结果为风电场的风力机选型提供了一种有效可行的方法,具有一定的应用参考价值。  相似文献   

16.
This paper presents a review on the performance of Savonius wind turbines. This type of turbine is unusual and its application for obtaining useful energy from air stream is an alternative to the use of conventional wind turbines. Simple construction, high start up and full operation moment, wind acceptance from any direction, low noise and angular velocity in operation, reducing wear on moving parts, are some advantages of using this type of machine. Over the years, numerous adaptations for this device were proposed. The variety of possible configurations of the rotor is another advantage in using such machine. Each different arrangement of Savonius rotor affects its performance. Savonius rotor performance is affected by operational conditions, geometric and air flow parameters. The range of reported values for maximum averaged power coefficient includes values around 0.05–0.30 for most settings. Performance gains of up to 50% for tip speed ratio of maximum averaged power coefficient are also reported with the use of stators. Present article aims to gather relevant information about Savonius turbines, bringing a discussion about their performance. It is intended to provide useful knowledge for future studies.  相似文献   

17.
Wind turbines are used in a variety of applications with different performance requirements. Investigating the influence of scaling on wind turbine characteristics can pave the way to utilize the experience gained from a smaller turbine for a larger one. In this paper, the effects of wind turbine size on aerodynamic characteristics of a rotor blade are examined using CFD simulation. NREL phase VI wind turbine rotor was simulated in order to validate the results and ensure the accuracy of the CFD model. A 2 MW wind turbine was then chosen as a large turbine and a scaled down model of its rotor was simulated numerically. The results of the simulation were introduced to Similarity Theory relations in order to predict the aerodynamic characteristics of the 2 MW wind turbine. The 2 MW turbine was also simulated and the results of the simulation were compared to predictions of Similarity Theory. It was observed that the results of the simulation completely follow the values predicted by Similarity Theory. Both Similarity Theory predictions and simulation results demonstrated that the torque increases with the cube of change in rotor diameter whereas the thrust value and aerodynamic forces grow with the square of change in diameter.  相似文献   

18.
Phases of icing on wind turbine blades characterized by ice accumulation   总被引:1,自引:0,他引:1  
Icing experiments on wind turbine blade profiles have been performed at the University of Manitoba Icing Tunnel Facility to facilitate a greater understanding of the mechanisms involved in the icing process for wind turbines exposed to cold climates. Blade icing results in the degradation of power performance and is a critical issue for the optimization of power performance and safe operation of wind turbines. Accumulation rate, the amount of ice that accumulates at the leading edge of the blade profile as a function of time, provides a characteristic measurement that can be used to classify the phases of icing in an icing event and further identify the severity of potential problems arising as a result of ice accumulation on wind turbine blades. To control this characteristic, the mitigation strategies that were employed involved coatings, heat treatments and the combination thereof, in both glaze and rime icing regimes. By understanding the icing process and its characteristic behavior to non-mitigated and mitigated scenarios, the phases of icing of both circumstances may be defined. This paper documents the data recorded from the experimental icing event and provides results of the comparative behavior of the icing mitigation strategies and extends this understanding to define the phases of icing on wind turbine blades.  相似文献   

19.
Recently wind energy has become one of the most important alternative energy sources and is growing at a rapid rate because of its renewability and abundancy. For the clustered wind turbines in a wind farm, significant wind power losses have been observed due to wake interactions of the air flow induced by the upstream turbines to the downstream turbines. One approach to reduce power losses caused by the wake interactions is through the optimization of wind farm layout, which determine the wind turbine positions and control strategy, which determine the wind turbine operations. In this paper, a new approach named simultaneous layout plus control optimization is developed. The effectiveness is studied by comparison to two other approaches (layout optimization and control optimization). The results of different optimizations, using both grid based and unrestricted coordinate wind farm design methods, are compared for both ideal and realistic wind conditions. Even though the simultaneous layout plus control optimization is theoretically superior to the others, it is prone to the local minima. Through the parametric study of crossover and mutation probabilities of the optimization algorithm, the results of the approach are generally satisfactory. For both simple and realistic wind conditions, the wind farm with the optimized control strategy yield 1–3 kW more power per turbine than that with the self-optimum control strategy, and the unrestricted coordinate method yield 1–2 kW more power per turbine than the grid based method.  相似文献   

20.
Interactive flow field around two Savonius turbines   总被引:1,自引:0,他引:1  
The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号