首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid metal–organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy‐related applications. Herein, a well‐organized interleaved composite of graphene‐like nanosheets embedded with MnO2 nanoparticles (MnO2@C‐NS) using a manganese‐based MOF and employed as a promising anode material for Li‐ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g?1 (close to the theoretical capacity of MnO2, 1232 mAh g?1) at 0.1 A g?1 with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C‐NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium‐based MOFs) cathode materials. The LIHC full‐cell delivers an ultrahigh specific energy of 166 Wh kg?1 at 550 W kg?1 and maintained to 49.2 Wh kg?1 even at high specific power of 3.5 kW kg?1 as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next‐generation energy storage devices.  相似文献   

2.
This work reports that natural graphite is capable of Na insertion and extraction with a remarkable reversibility using ether‐based electrolytes. Natural graphite (the most well‐known anode material for Li–ion batteries) has been barely studied as a suitable anode for Na rechargeable batteries due to the lack of Na intercalation capability. Herein, graphite is not only capable of Na intercalation but also exhibits outstanding performance as an anode for Na ion batteries. The graphite anode delivers a reversible capacity of ≈150 mAh g?1 with a cycle stability for 2500 cycles, and more than 75 mAh g?1 at 10 A g?1 despite its micrometer‐size (≈100 μm). An Na storage mechanism in graphite, where Na+‐solvent co‐intercalation occurs combined with partial pseudocapacitive behaviors, is revealed in detail. It is demonstrated that the electrolyte solvent species significantly affect the electrochemical properties, not only rate capability but also redox potential. The feasibility of graphite in a Na full cell is also confirmed in conjunction with the Na1.5VPO4.8F0.7 cathode, delivering an energy of ≈120 Wh kg?1 while maintaining ≈70% of the initial capacity after 250 cycles. This exceptional behavior of natural graphite promises new avenues for the development of cost‐effective and reliable Na ion batteries.  相似文献   

3.
Na‐ion hybrid capacitors consisting of battery‐type anodes and capacitor‐style cathodes are attracting increasing attention on account of the abundance of sodium‐based resources as well as the potential to bridge the gap between batteries (high energy) and supercapacitors (high power). Herein, hierarchically structured carbon materials inspired by multiscale building units of cellulose from nature are assembled with cellulose‐based gel electrolytes into Na‐ion capacitors. Nonporous hard carbon anodes are obtained through the direct thermal pyrolysis of cellulose nanocrystals. Nitrogen‐doped carbon cathodes with a coral‐like hierarchically porous architecture are prepared via hydrothermal carbonization and activation of cellulose microfibrils. The reversible charge capacity of the anode is 256.9 mAh g?1 when operating at 0.1 A g?1 from 0 to 1.5 V versus Na+/Na, and the discharge capacitance of cathodes tested within 1.5 to 4.2 V versus Na+/Na is 212.4 F g?1 at 0.1 A g?1. Utilizing Na+ and ClO4? as charge carriers, the energy density of the full Na‐ion capacitor with two asymmetric carbon electrodes can reach 181 Wh kg?1 at 250 W kg?1, which is one of the highest energy devices reported until now. Combined with macrocellulose‐based gel electrolytes, all‐cellulose‐based quasi‐solid‐state devices are demonstrated possessing additional advantages in terms of overall sustainability.  相似文献   

4.
Transition metal phosphides (TMPs) possess high theoretical sodium storage capacities, but suffer from poor rate performance, due to their intrinsic low conductivity and large volume expansion upon sodiation/desodiation. Compositing TMPs with carbon materials or downsizing their feature size are recognized as efficient approaches to address the above issues. Nevertheless the surface‐controlled capacitive behavior is generally dominated, which inevitably compromises the charge/discharge platform, and decreases the operational potential window in full‐cell constructions. In this work, a novel architecture (FeP@OCF) with FeP quantum dots confined in P‐doped 3D octahedral carbon framework/carbon nanotube is rationally designed. Such structure enables a simultaneous enhancement on the diffusion‐controlled capacity in the platform region (2.3 folds), and the surface‐controlled capacity in the slope region (2.9 folds) as compared to that of pure FeP. As a result, an excellent reversible capacity (674 mAh g?1@ 0.1 A g?1) and a record high‐rate performance (262 mAh g?1 @ 20 A g?1) are achieved. A full‐cell FeP@OCF// Na3V2(PO4)3 is also constructed showing an outstandingly high energy density of 185 Wh kg?1 (based on the total mass of active materials in both electrodes), which outperforms the state‐of‐the art TMP‐based sodium‐ion battery full cells.  相似文献   

5.
Heteroatom modification represents one of the major areas of carbon materials' research in electrical energy storage. However, the influence of heteroatomic state evolution on electrochemical properties remains an elusive topic. Herein, thiophene‐2,5‐dicarboxylic acid is chemically activated to prepare O,S‐diatomic hybrid carbon material (OS–C). The heteroatoms and carbon matrix coexist in the form of C?O/C? O and C? S/S? S bonds, which introduce porous networks to the partially graphitized carbon skeleton and provide abundant active sites for better ion absorption. Moreover, the heteroatoms and carbon matrix are bridged to establish stable pseudocapacitive functional groups like quinoid unit and disulfide bonds, which can be electrochemically converted into benzenoid units and mercaptan anions through Faradaic reactions to further improve the reversible capacity. Combined with the detailed kinetic exploration and in situ investigation of the electrochemical impedance spectra, the energy storage mechanism for lithium/sodium is proposed in the following steps: Faradaic reactions at a higher potential range, energy storage at active sites, and ions intercalation on the graphitized parts in the low‐voltage states. Greatly, the electrode can store lithium up to the capacity of ≈700 mAh g?1, while also delivering ≈330 mAh g?1 of sodium storage, providing lifetimes in excess of thousands of cycles.  相似文献   

6.
2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via Ti? S bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g?1 at 0.1 A g?1 (≈120 mAh g?1 at 15 A g?1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g?1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg?1) under high power density (8240 W kg?1), and outstanding cycling performance.  相似文献   

7.
Searching high capacity cathode materials is one of the most important fields of the research and development of sodium‐ion batteries (SIBs). Here, we report a FeO0.7F1.3/C nanocomposite synthesized via a solution process as a new cathode material for SIBs. This material exhibits a high initial discharge capacity of 496 mAh g?1 in a sodium cell at 50 °C. From the 3rd to 50th cycle, the capacity fading is only 0.14% per cycle (from 388 mAh g?1 at 3rd the cycle to 360 mAh g?1 at the 50th cycle), demonstrating superior cyclability. A high energy density of 650 Wh kg?1 is obtained at the material level. The reaction mechanism studies of FeO0.7F1.3/C with sodium show a hybridized mechanism of both intercalation and conversion reaction.  相似文献   

8.
Lithium‐ion capacitors (LICs) are hybrid energy storage devices that have the potential to bridge the gap between conventional high‐energy lithium‐ion batteries and high‐power capacitors by combining their complementary features. The challenge for LICs has been to improve the energy storage at high charge?discharge rates by circumventing the discrepancy in kinetics between the intercalation anode and capacitive cathode. In this article, the rational design of new nanostructured LIC electrodes that both exhibit a dominating capacitive mechanism (both double layer and pseudocapacitive) with a diminished intercalation process, is reported. Specifically, the electrodes are a 3D interconnected TiC nanoparticle chain anode, synthesized by carbothermal conversion of graphene/TiO2 hybrid aerogels, and a pyridine‐derived hierarchical porous nitrogen‐doped carbon (PHPNC) cathode. Electrochemical properties of both electrodes are thoroughly characterized which demonstrate their outstanding high‐rate capabilities. The fully assembled PHPNC//TiC LIC device delivers an energy density of 101.5 Wh kg?1 and a power density of 67.5 kW kg?1 (achieved at 23.4 Wh kg?1), and a reasonably good cycle stability (≈82% retention after 5000 cycles) within the voltage range of 0.0?4.5 V.  相似文献   

9.
Rechargeable batteries with flexibility can find tremendous applications in wearable and bendable electronics. One central mission for the advancement of such high‐performance batteries is the exploration of flexible anodes with electrochemical and mechanical robustness. Herein reported is a robust and flexible sodium‐ion anode based on self‐supported hematite nanoarray grown on carbon cloth. The ammonia treatment that results in dual doping of both nitrogen and low‐valent iron renders surface reactivity and electric conductivity to the material. The dual‐doped hematite arrays afford a robust activity for sodium storage, exhibiting reversible capacities of 895 and 382 mAh g?1 at current rates of 0.1 and 5 A g?1, respectively, or 615 and 356 mAh g?1 by removing the contribution of the substrate. They also sustain 85% of the initial capacity upon 200 cycles at 0.2 A g?1. To demonstrate the flexibility, full cells composed of a hematite array anode and Na3V2(PO4)3/C cathode are assembled. The cell is capable of affording an energy density of 201 Wh kg?1 and sustaining repeated bending without performance decay, demonstrating a significant potential in practical application.  相似文献   

10.
The formation of a solid electrolyte interface (SEI) on the surface of a carbon anode consumes the active sodium ions from the cathode and reduces the energy density of sodium‐ion batteries (SIBs). Herein, a simple electrode‐level presodiation strategy by spraying a sodium naphthaline (Naph‐Na) solution onto a carbon electrode is reported, which compensates the initial sodium loss and improves the energy density of SIBs. After presodiation, an SEI layer is preformed on the surface of carbon anode before battery cycling. It is shown that a large irreversible capacity of 60 mAh g?1 is replenished and 20% increase of the first‐cycle Coulombic efficiency is achieved for a hard carbon anode using this presodiation strategy, and the energy density of a Na0.9[Cu0.22Fe0.30Mn0.48]O2||carbon full cell is increased from 141 to 240 Wh kg?1 by using the presodiated carbon anode. This simple and scalable electrode‐level chemical presodiation route also shows generality and value for the presodiation of other anodes in SIBs.  相似文献   

11.
Hard carbons (HCs) possess high lithium/sodium storage capacities, which however suffer from low electric conductivity and poor ion diffusion kinetics. An efficient structure design with appropriate heteroatoms doping and optimized graphitic/defective degree is highly desired to tackle these problems. This work reports a new design of N‐doped HC nanoshells (N‐GCNs) with homogeneous defective nanographite domains, fabricated through the prechelation between Ni2+ and chitosan and subsequent catalyst confined graphitization. The as‐prepared N‐GCNs deliver a high reversible lithium storage capacity of 1253 mA h g?1, with outstanding rate performance (175 mA h g?1 at a high rate of 20 A g?1) and good cycling stability, which outperforms most state‐of‐the‐art HCs. Meanwhile, a high reversible sodium storage capacity of 325 mA h g?1 is also obtained, which stabilizes at 174 mA h g?1 after 200 cycles. Density functional theory calculations are performed to uncover the coupling effect between heteroatom‐doping and the defective nanographitic domains down to the atomic scale. The in situ Raman analysis reveals the “adsorption mechanism” for sodium storage and the “adsorption–intercalation mechanism” for lithium storage of N‐GCNs.  相似文献   

12.
The large volume expansion induced by K+ intercalation is always a big challenge for designing high‐performance electrode materials in potassium‐ion storage system. Based on the idea that large‐sized ions should accommodate big “houses,” a facile‐induced growth strategy is proposed to achieve the self‐loading of MoS2 clusters inside a hollow tubular carbon skeleton (HTCS). Meantime, a step‐by‐step intercalation technology is employed to tune the interlayer distance and the layer number of MoS2. Based on the above, the ED‐MoS2@CT hybrids are achieved by self‐loading and anchoring the well‐dispersed ultrathin MoS2 nanosheets on the inner surface of HTCSs. This unique compositing model not only alleviates the mechanical strain efficiently, but also provides spacious “roads” (hollow tubular carbon skeleton) and “houses” (interlayer expanded ultrathin MoS2 sheets) for fast K+ transition and storage. As an anode of potassium‐ion batteries, the resultant ED‐MoS2@CT electrode delivers a high specific capacity of 148.5 mAh g?1 at 2 A g?1 after 10 000 cycles with only 0.002% fading per cycle. The assembled ED‐MoS2@CT//PC potassium‐ion hybrid supercapacitor device shows a high energy density of 148 Wh kg?1 at a power density of 965 W kg?1, which is comparable to that of lithium‐ion hybrid supercapacitors.  相似文献   

13.
Batteries and supercapacitors are critical devices for electrical energy storage with wide applications from portable electronics to transportation and grid. However, rechargeable batteries are typically limited in power density, while supercapacitors suffer low energy density. Here, a novel symmetric Na‐ion pseudocapacitor with a power density exceeding 5.4 kW kg?1 at 11.7 A g?1, a cycling life retention of 64.5% after 10 000 cycles at 1.17 A g?1, and an energy density of 26 Wh kg?1 at 0.585 A g?1 is reported. Such a device operates on redox reactions occurring on both electrodes with an identical active material, viz., Na3V2(PO4)3 encapsulated inside nanoporous carbon. This device, in a full‐cell scale utilizing highly reversible and high‐rate Na‐ion intercalational pseudocapacitance, can bridge the performance gap between batteries and supercapacitors. The characteristics of the device and the potentially low‐cost production make it attractive for hybrid electric vehicles and low‐maintenance energy storage systems.  相似文献   

14.
2D carbon nanosheets are considered to be promising candidates for use as sodium ion battery (SIB) anodes due to their large specific surface area and excellent electronic conductivity. However, their applications are hampered by inferior cycling performance, insufficient storage capacity, and high cost. N, B co‐doping carbon nanosheets (NBTs) are synthesized using biomass‐based gelatin as carbon precursor and boric acid as template, and demonstrate their great potential as high‐performance SIB anodes in practical applications. The synergistic effect of heteroatom doping and ultrathin 2D structure provides the NBTs with abundant defects, active sites, and short ion/electron transfer distance, which favors and improves the storage capabilities and rate performances. The optimized NBTs present a remarkable cyclability and superb rate capability (309 mAh g?1 at 0.2 A g?1 for 200 cycles; 225 mAh g?1 at 1 A g?1 for 2000 cycles). Meanwhile, the Na storage mechanism is proved to be a pseudocapacitive‐controlled process, which accounts for the fast charge/discharge behaviors. This work demonstrates an effective template method to produce 2D heteroatoms co‐doping carbon nanosheets to achieve excellent Na storage performances.  相似文献   

15.
Transition‐metal dichalcogenides have emerged as promising anodes of sodium ion batteries (SIBs). Their practical SIB application calls for an easy‐to‐handle synthetic technique capable of fabricating favorable properties with high conductivity and stable structure. Here, a solvothermal strategy is reported for bottom‐up self‐assembling of nanoflowers' building block, i.e., conductive interlayer‐expanded 2D WS2 nanosheets thanks to in situ interlayer modification by nitrogen‐doped carbon matrix, into 3D hollow microflower bud‐like hybrids (H‐WS2@NC). The 3D nano/microhierarchical hollow structures are constructed by conductive interlayer‐expanded WS2 nanosheets' building blocks, providing abundant channels facilitating mass transport/electrons transfer, robust protection layer to avoid the direct contact between WS2 nanosheets and electrolyte, sufficient inner space for accommodating volume variation, and decreased ions diffusion energy barrier for accelerating electrochemical kinetics, as revealed by density functional theory calculations. As such, the 3D H‐WS2@NC hybrids exhibit quite attractive sodium storage performance with high reversible capacity, superior rate capability, and impressively long cycling life. The 3D H‐WS2@NC is further verified as anode of sodium‐ion full cell pairing with Na3V2(PO4)3/rGO cathode, delivering a stable reversible capacity of 296 mAh g?1 at 0.5 A g?1 with high energy density of 128 Wh kg?1total at a power density of 386 W kg?1total.  相似文献   

16.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

17.
Dual‐ion batteries (DIBs) have attracted much attention due to their advantages of low cost and especially environmental friendliness. However, the capacities of most DIBs are still unsatisfied (≈100 mAh g?1) ascribed to the limited capacity of anions intercalation for conventional graphite cathode. In this study, 3D porous microcrystalline carbon (3D‐PMC) was designed and synthesized via a self‐templated growth approach, and when used as cathode for a DIB, it allows both intercalation and adsorption of anions. The microcrystalline carbon is beneficial to obtain capacity originated from anions intercalation, and the 3D porous structure with a certain surface area contributes to anions adsorption capacity. With the synergistic effect, this 3D‐PMC is utilized as cathode and tin as anode for a sodium‐based DIB, which has a high capacity of 168.0 mAh g?1 at 0.3 A g?1, among the best values of reported DIBs so far. This cell also exhibits long‐term cycling stability with a capacity retention of ≈70% after 2000 cycles at a high current rate of 1 A g?1. It is believed that this work will provide a strategy to develop high‐performance cathode materials for DIBs.  相似文献   

18.
Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g?1 at 0.2 C), high rate capability (61 mA h g?1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg?1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance.  相似文献   

19.
Li‐ion hybrid capacitors (LIHCs), consisting of an energy‐type redox anode and a power‐type double‐layer cathode, are attracting significant attention due to the good combination with the advantages of conventional Li‐ion batteries and supercapacitors. However, most anodes are battery‐like materials with the sluggish kinetics of Li‐ion storage, which seriously restrict the energy storage of LIHCs at the high charge/discharge rates. Herein, vanadium nitride (VN) nanowire is demonstated to have obvious pseudocapacitive characteristic of Li‐ion storage and can get further gains in energy storage through a 3D porous architecture with the assistance of conductive reduced graphene oxide (RGO). The as‐prepared 3D VN–RGO composite exhibits the large Li‐ion storage capacity and fast charge/discharge rate within a wide working widow from 0.01–3 V (vs Li/Li+), which could potentially boost the operating potential and the energy and power densities of LIHCs. By employing such 3D VN–RGO composite and porous carbon nanorods with a high surface area of 3343 m2 g?1 as the anode and cathode, respectively, a novel LIHCs is fabricated with an ultrahigh energy density of 162 Wh kg?1 at 200 W kg?1, which also remains 64 Wh kg?1 even at a high power density of 10 kW kg?1.  相似文献   

20.
Transition metal oxides, possessing high theoretical specific capacities, are promising anode materials for sodium‐ion batteries. However, the sluggish sodiation/desodiation kinetics and poor structural stability restrict their electrochemical performance. To achieve high and fast Na storage capability, in this work, rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles are synthesized by a facile one‐pot hydrothermal treatment with postannealing. The hierarchy hollow structure with ultrafine Co3O4 nanoparticles embedded in the continuous carbon matrix enables greatly enhanced structural stability and fast electrode kinetics. When tested in sodium‐ion batteries, the hollow structured composite electrode exhibits an outstandingly high reversible specific capacity of 712 mAh g?1 at a current density of 0.1 A g?1, and retains a capacity of 223 mAh g?1 even at a large current density of 5 A g?1. Besides the superior Na storage capability, good cycle performance is demonstrated for the composite electrode with 74.5% capacity retention after 500 cycles, suggesting promising application in advanced sodium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号