首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
Among all typical transition‐metal dichalcogenides (TMDs), the bandgap of α‐MoTe2 is smallest and is close to that of conventional 3D Si. The properties of α‐MoTe2 make it a favorable candidate for future electronic devices. Even though there are a few reports regarding fabrication of complementary metal–oxide‐semiconductor (CMOS) inverters or p–n junction by controlling the charge‐carrier polarity of TMDs, the fabrication process is complicated. Here, a straightforward selective doping technique is demonstrated to fabricate a 2D p–n junction diode and CMOS inverter on a single α‐MoTe2 nanoflake. The n‐doped channel of a single α‐MoTe2 nanoflake is selectively converted to a p‐doped region via laser‐irradiation‐induced MoOx doping. The homogeneous 2D MoTe2 CMOS inverter has a high DC voltage gain of 28, desirable noise margin (NMH = 0.52 VDD, NML = 0.40 VDD), and an AC gain of 4 at 10 kHz. The results show that the doping technique by laser scan can be potentially used for future larger‐scale MoTe2 CMOS circuits.  相似文献   

2.
Recently, α‐MoTe2, a 2D transition‐metal dichalcogenide (TMD), has shown outstanding properties, aiming at future electronic devices. Such TMD structures without surface dangling bonds make the 2D α‐MoTe2 a more favorable candidate than conventional 3D Si on the scale of a few nanometers. The bandgap of thin α‐MoTe2 appears close to that of Si and is quite smaller than those of other typical TMD semiconductors. Even though there have been a few attempts to control the charge‐carrier polarity of MoTe2, functional devices such as p–n junction or complementary metal–oxide–semiconductor (CMOS) inverters have not been reported. Here, we demonstrate a 2D CMOS inverter and p–n junction diode in a single α‐MoTe2 nanosheet by a straightforward selective doping technique. In a single α‐MoTe2 flake, an initially p‐doped channel is selectively converted to an n‐doped region with high electron mobility of 18 cm2 V?1 s?1 by atomic‐layer‐deposition‐induced H‐doping. The ultrathin CMOS inverter exhibits a high DC voltage gain of 29, an AC gain of 18 at 1 kHz, and a low static power consumption of a few nanowatts. The results show a great potential of α‐MoTe2 for future electronic devices based on 2D semiconducting materials.  相似文献   

3.
van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next‐generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe2/SnS2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe2/SnS2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe2/SnS2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 1013 Jones (Iph/Idark ratio of ≈106) and photoresponsivity of 244 A W?1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm?2).  相似文献   

4.
Van der Waals (vdW) p–n heterojunctions consisting of various 2D layer compounds are fascinating new artificial materials that can possess novel physics and functionalities enabling the next‐generation of electronics and optoelectronics devices. Here, it is reported that the WSe2/WS2 p–n heterojunctions perform novel electrical transport properties such as distinct rectifying, ambipolar, and hysteresis characteristics. Intriguingly, the novel tunable polarity transition along a route of n‐“anti‐bipolar”–p‐ambipolar is observed in the WSe2/WS2 heterojunctions owing to the successive work of conducting channels of junctions, p‐WSe2 and n‐WS2 on the electrical transport of the whole systems. The type‐II band alignment obtained from first principle calculations and built‐in potential in this vdW heterojunction can also facilitate the efficient electron–hole separation, thus enabling the significant photovoltaic effect and a much enhanced self‐driven photoswitching response in this system.  相似文献   

5.
Heterojunctions formed from low‐dimensional materials can result in photovoltaic and photodetection devices displaying exceptional physical properties and excellent performance. Herein, a mixed‐dimensional van der Waals (vdW) heterojunction comprising a 1D n‐type Ga‐doped CdS nanowire and a 2D p‐type MoTe2 flake is demonstrated; the corresponding photovoltaic device exhibits an outstanding conversion efficiency of 15.01% under illumination with white light at 650 µW cm?2. A potential difference of 80 meV measured, using Kelvin probe force microscopy, at the CdS–MoTe2 interface confirms the separation and accumulation of photoexcited carriers upon illumination. Moreover, the photodetection characteristics of the vdW heterojunction device at zero bias reveal a rapid response time (<50 ms) and a photoresponsivity that are linearly proportional to the power density of the light. Interestingly, the response of the vdW heterojunction device is negligible when illuminated at 580 nm; this exceptional behavior is presumably due to the rapid rate of recombination of the photoexcited carriers of MoTe2. Such mixed‐dimensional vdW heterojunctions appear to be novel design elements for efficient photovoltaic and self‐driven photodetection devices.  相似文献   

6.
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.  相似文献   

7.
A systematic modulation of the carrier type in molybdenum ditelluride (MoTe2) field‐effect transistors (FETs) is described, through rapid thermal annealing (RTA) under a controlled O2 environment (p‐type modulation) and benzyl viologen (BV) doping (n‐type modulation). Al2O3 capping is then introduced to improve the carrier mobilities and device stability. MoTe2 is found to be ultrasensitive to O2 at elevated temperatures (250 °C). Charge carriers of MoTe2 flakes annealed via RTA at various vacuum levels are tuned between predominantly pristine n‐type ambipolar, symmetric ambipolar, unipolar p‐type, and degenerate‐like p‐type. Changes in the MoTe2‐transistor performance are confirmed to originate from the physical and chemical absorption and dissociation of O2, especially at tellurium vacancy sites. The electron branch is modulated by varying the BV dopant concentrations and annealing conditions. Unipolar n‐type MoTe2 FETs with a high on–off ratio exceeding 106 are achieved under optimized doping conditions. By introducing Al2O3 capping, carrier field effect mobilities (41 for holes and 80 cm2 V?1 s?1 for electrons) and device stability are improved due to the reduced trap densities and isolation from ambient air. Lateral MoTe2 p–n diodes with an ideality factor of 1.2 are fabricated using the p‐ and n‐type doping technique to test the superb potential of the doping method in functional electronic device applications.  相似文献   

8.
This work reports experimental demonstrations of reversible crystalline phase transition in ultrathin molybdenum ditelluride (MoTe2) controlled by thermal and mechanical mechanisms on the van der Waals (vdW) nanoelectromechanical systems (NEMS) platform, with hexagonal boron nitride encapsulated MoTe2 structure residing on top of graphene layer. Benefiting from very efficient electrothermal heating and straining effects in the suspended vdW heterostructures, MoTe2 phase transition is triggered by rising temperature and strain level. Raman spectroscopy monitors the MoTe2 crystalline phase signatures in situ and clearly records reversible phase transitions between hexagonal 2H (semiconducting) and monoclinic 1T′ (metallic) phases. Combined with Raman thermometry, precisely measured nanomechanical resonances of the vdW devices enable the determination and monitoring of the strain variations as temperature is being regulated by electrothermal control. These results not only deepen the understanding of MoTe2 phase transition, but also demonstrate a novel platform for engineering MoTe2 phase transition and multiphysical devices.  相似文献   

9.
2D layers of metal dichalcogenides are of considerable interest for high‐performance electronic devices for their unique electronic properties and atomically thin geometry. 2D SnS2 nanosheets with a bandgap of ≈2.6 eV have been attracting intensive attention as one potential candidate for modern electrocatalysis, electronic, and/or optoelectronic fields. However, the controllable growth of large‐size and high‐quality SnS2 atomic layers still remains a challenge. Herein, a salt‐assisted chemical vapor deposition method is provided to synthesize atomic‐layer SnS2 with a large crystal size up to 410 µm and good uniformity. Particularly, the as‐fabricated SnS2 nanosheet‐based field‐effect transistors (FETs) show high mobility (2.58 cm2 V?1 s?1) and high on/off ratio (≈108), which is superior to other reported SnS2‐based FETs. Additionally, the effects of temperature on the electrical properties are systematically investigated. It is shown that the scattering mechanism transforms from charged impurities scattering to electron–phonon scattering with the temperature. Moreover, SnS2 can serve as an ideal material for energy storage and catalyst support. The high performance together with controllable growth of SnS2 endow it with great potential for future applications in electrocatalysis, electronics, and optoelectronics.  相似文献   

10.
To realize basic electronic units such as complementary metal‐oxide‐semiconductor (CMOS) inverters and other logic circuits, the selective and controllable fabrication of p‐ and n‐type transistors with a low Schottky barrier height is highly desirable. Herein, an efficient and nondestructive technique of electron‐charge transfer doping by depositing a thin Al2O3 layer on chemical vapor deposition (CVD)‐grown 2H‐MoTe2 is utilized to tune the doping from p‐ to n‐type. Moreover, a type‐controllable MoTe2 transistor with a low Schottky barrier height is prepared. The selectively converted n‐type MoTe2 transistor from the p‐channel exhibits a maximum on‐state current of 10 µA, with a higher electron mobility of 8.9 cm2 V?1 s?1 at a drain voltage (Vds) of 1 V with a low Schottky barrier height of 28.4 meV. To validate the aforementioned approach, a prototype homogeneous CMOS inverter is fabricated on a CVD‐grown 2H‐MoTe2 single crystal. The proposed inverter exhibits a high DC voltage gain of 9.2 with good dynamic behavior up to a modulation frequency of 1 kHz. The proposed approach may have potential for realizing future 2D transition metal dichalcogenide‐based efficient and ultrafast electronic units with high‐density circuit components under a low‐dimensional regime.  相似文献   

11.
SnS2 has been widely studied as an anode material for sodium‐ion batteries (SIBs) based on the high theoretical capacity and layered structure. Unfortunately, rapid capacity decay associated with volume variation during cycling limits practical application. Herein, SnS2/Co3S4 hollow nanocubes anchored on S‐doped graphene are synthesized for the first time via coprecipitation and hydrothermal methods. When applied as the anode for SIBs, the sample delivers a distinguished charge specific capacity of 1141.8 mAh g?1 and there is no significant capacity decay (0.1 A g?1 for 50 cycles). When the rate is increased to 0.5 A g?1, it presents 845.7 mAh g?1 after cycling 100 times. Furthermore, the composite also exhibits an ultrafast sodium storage capability where 392.9 mAh g?1 can be obtained at 10 A g?1 and the charging time is less than 3 min. The outstanding electrochemical properties can be ascribed to the enhancement of conductivity for the addition of S‐doped graphene and the existence of p–n junctions in the SnS2/Co3S4 heterostructure. Moreover, the presence of mesopores between nanosheets can alleviate volume expansion during cycling as well as being beneficial for the migration of Na+.  相似文献   

12.
The fabrication of in‐plane 2H‐1T′ MoTe2 homojunctions by the flux‐controlled, phase‐engineering of few‐layer MoTe2 from Mo nanoislands is reported. The phase of few‐layer MoTe2 is controlled by simply changing Te atomic flux controlled by the temperature of the reaction vessel. Few‐layer 2H MoTe2 is formed with high Te flux, while few‐layer 1T′ MoTe2 is obtained with low Te flux. With medium flux, few‐layer in‐plane 2H‐1T′ MoTe2 homojunctions are synthesized. As‐synthesized MoTe2 is characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. Kelvin probe force microscopy and Raman mapping confirm that in‐plane 2H‐1T′ MoTe2 homojunctions have abrupt interfaces between 2H and 1T′ MoTe2 domains, possessing a potential difference of about 100 mV. It is further shown that this method can be extended to create patterned metal–semiconductor junctions in MoTe2 in a two‐step lithographic synthesis. The flux‐controlled phase engineering method could be utilized for the large‐scale controlled fabrication of 2D metal–semiconductor junctions for next‐generation electronic and optoelectronic devices.  相似文献   

13.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

14.
Photodetectors based on Weyl semimetal promise extreme performance in terms of highly sensitive, broadband and self‐powered operation owing to its extraordinary material properties. Layered Type‐II Weyl semimetal that break Lorentz invariance can be further integrated with other two‐dimensional materials to form van der Waals heterostructures and realize multiple functionalities inheriting the advantages of other two‐dimensional materials. Herein, we report the realization of a broadband self‐powered photodetector based on Type‐II Weyl semimetal Td‐MoTe2. The prototype metal–MoTe2–metal photodetector exhibits a responsivity of 0.40 mA W?1 and specific directivity of 1.07 × 108 Jones with 43 μs response time at 532 nm. Broadband responses from 532 nm to 10.6 μm are experimentally tested with a potential detection range extendable to far‐infrared and terahertz. Furthermore, we identify the response of the detector is polarization angle sensitive due to the anisotropic response of MoTe2. The anisotropy is found to be wavelength dependent, and the degree of anisotropy increases as the excitation wavelength gets closer to the Weyl nodes. In addition, with power and temperature dependent photoresponse measurements, the photocurrent generation mechanisms are investigated. Our results suggest this emerging class of materials can be harnessed for broadband angle sensitive, self‐powered photodetection with decent responsivities.  相似文献   

15.
2D transition metal dichalcogenides (TMDs) have exhibited strong application potentials in new emerging electronics because of their atomic thin structure and excellent flexibility, which is out of field of tradition silicon technology. Similar to 3D p–n junctions, 2D p–n heterojunctions by laterally connecting TMDs with different majority charge carriers (electrons and holes), provide ideal platform for current rectifiers, light‐emitting diodes, diode lasers and photovoltaic devices. Here, growth and electrical studies of atomic thin high‐quality p–n heterojunctions between molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) by one‐step chemical vapor deposition method are reported. These p–n heterojunctions exhibit high built‐in potential (≈0.7 eV), resulting in large current rectification ratio without any gate control for diodes, and fast response time (≈6 ms) for self‐powered photodetectors. The simple one‐step growth and electrical studies of monolayer lateral heterojunctions open up the possibility to use TMD heterojunctions for functional devices.  相似文献   

16.
Doped p–n junctions are fundamental electrical components in modern electronics and optoelectronics. Due to the development of device miniaturization, the emergence of two-dimensional (2D) materials may initiate the next technological leap toward the post-Moore era owing to their unique structures and physical properties. The purpose of fabricating 2D p–n junctions has fueled many carrier-type modulation methods, such as electrostatic doping, surface modification, and element intercalation. Here, by using the nonvolatile ferroelectric field polarized in the opposite direction, efficient carrier modulation in ambipolar molybdenum telluride (MoTe2) to form a p–n homojunction at the domain wall is demonstrated. The nonvolatile MoTe2 p–n junction can be converted to n–p, n–n, and p–p configurations by external gate voltage pulses. Both rectifier diodes exhibited excellent rectifying characteristics with a current on/off ratio of 5 × 105. As a photodetector/photovoltaic, the device presents responsivity of 5 A W−1, external quantum efficiency of 40%, specific detectivity of 3 × 1012 Jones, fast response time of 30 µs, and power conversion efficiency of 2.5% without any bias or gate voltages. The MoTe2 p–n junction presents an obvious short-wavelength infrared photoresponse at room temperature, complementing the current infrared photodetectors with the inadequacies of complementary metal-oxide-semiconductor incompatibility and cryogenic operation temperature.  相似文献   

17.
Precisely controllable and reversible p/n‐type electronic doping of molybdenum ditelluride (MoTe2) transistors is achieved by electrothermal doping (E‐doping) processes. E‐doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n‐type) doping and exposure to air, which induces hole (p‐type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe2 surface, and allows the accurate manipulation of p/n‐type electrical doping of MoTe2 transistors. Because no dopant or special gas is used in the E‐doping processes of MoTe2, E‐doping is a simple and efficient method. Moreover, through exact manipulation of p/n‐type doping of MoTe2 transistors, quasi‐complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E‐doping, adopted in obtaining p/n‐type doping of MoTe2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance.  相似文献   

18.
The major challenges faced by candidate electrode materials in lithium‐ion batteries (LIBs) include their low electronic and ionic conductivities. 2D van der Waals materials with good electronic conductivity and weak interlayer interaction have been intensively studied in the electrochemical processes involving ion migrations. In particular, molybdenum ditelluride (MoTe2) has emerged as a new material for energy storage applications. Though 2H‐MoTe2 with hexagonal semiconducting phase is expected to facilitate more efficient ion insertion/deinsertion than the monoclinic semi‐metallic phase, its application as an anode in LIB has been elusive. Here, 2H‐MoTe2, prepared by a solid‐state synthesis route, has been employed as an efficient anode with remarkable Li+ storage capacity. The as‐prepared 2H‐MoTe2 electrodes exhibit an initial specific capacity of 432 mAh g?1 and retain a high reversible specific capacity of 291 mAh g?1 after 260 cycles at 1.0 A g?1. Further, a full‐cell prototype is demonstrated by using 2H‐MoTe2 anode with lithium cobalt oxide cathode, showing a high energy density of 454 Wh kg?1 (based on the MoTe2 mass) and capacity retention of 80% over 100 cycles. Synchrotron‐based in situ X‐ray absorption near‐edge structures have revealed the unique lithium reaction pathway and storage mechanism, which is supported by density functional theory based calculations.  相似文献   

19.
Monolayer MoTe2, with the narrowest direct bandgap of ≈1.1 eV among Mo‐ and W‐based transition metal dichalcogenides, has attracted increasing attention as a promising candidate for applications in novel near‐infrared electronics and optoelectronics. Realizing 2D lateral growth is an essential prerequisite for uniform thickness and property control over the large scale, while it is not successful yet. Here, layer‐by‐layer growth of 2 in. wafer‐scale continuous monolayer 2H‐MoTe2 films on inert SiO2 dielectrics by molecular beam epitaxy is reported. A single‐step Mo‐flux controlled nucleation and growth process is developed to suppress island growth. Atomically flat 2H‐MoTe2 with 100% monolayer coverage is successfully grown on inert 2 in. SiO2/Si wafer, which exhibits highly uniform in‐plane structural continuity and excellent phonon‐limited carrier transport behavior. The dynamics‐controlled growth recipe is also extended to fabricate continuous monolayer 2H‐MoTe2 on atomic‐layer‐deposited Al2O3 dielectric. With the breakthrough in growth of wafer‐scale continuous 2H‐MoTe2 monolayers on device compatible dielectrics, batch fabrication of high‐mobility monolayer 2H‐MoTe2 field‐effect transistors and the three‐level integration of vertically stacked monolayer 2H‐MoTe2 transistor arrays for 3D circuitry are successfully demonstrated. This work provides novel insights into the scalable synthesis of monolayer 2H‐MoTe2 films on universal substrates and paves the way for the ultimate miniaturization of electronics.  相似文献   

20.
The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec?1 at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2 van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2 vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2 as the channel, the SnSe/MoS2 vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltage VP of ?0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec?1 and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号