首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing physical double‐network (DN) removable hydrogel adhesives with both high healing efficiency and photothermal antibacterial activities to cope with multidrug‐resistant bacterial infection, wound closure, and wound healing remains an ongoing challenge. An injectable physical DN self‐healing hydrogel adhesive under physiological conditions is designed to treat multidrug‐resistant bacteria infection and full‐thickness skin incision/defect repair. The hydrogel adhesive consists of catechol–Fe3+ coordination cross‐linked poly(glycerol sebacate)‐co‐poly(ethylene glycol)‐g‐catechol and quadruple hydrogen bonding cross‐linked ureido‐pyrimidinone modified gelatin. It possesses excellent anti‐oxidation, NIR/pH responsiveness, and shape adaptation. Additionally, the hydrogel presents rapid self‐healing, good tissue adhesion, degradability, photothermal antibacterial activity, and NIR irradiation and/or acidic solution washing‐assisted removability. In vivo experiments prove that the hydrogels have good hemostasis of skin trauma and high killing ratio for methicillin‐resistant staphylococcus aureus (MRSA) and achieve better wound closure and healing of skin incision than medical glue and surgical suture. In particular, they can significantly promote full‐thickness skin defect wound healing by regulating inflammation, accelerating collagen deposition, promoting granulation tissue formation, and vascularization. These on‐demand dissolvable and antioxidant physical double‐network hydrogel adhesives are excellent multifunctional dressings for treating in vivo MRSA infection, wound closure, and wound healing.  相似文献   

2.
Massive bleeding and wound infection after tissue trauma are the major dangerous factors of casualties in disasters; hence, first‐aid supplies that can greatly achieve wound closure and effectively control the hemorrhage and infection are urgently needed. Although existing tissue adhesives can adhere to the tissue surfaces and achieve rapid wound closure, most of them have limited hemostatic and antibacterial capacities, making them unsuitable as the first‐aid tissue adhesives. In this study, inspired by the inherent hemostatic and antibacterial capacities of chitosan and the excellent tissue integration capacity originating from a Schiff base reaction, liquid bandage (LBA), an in situ imine crosslinking‐based photoresponsive chitosan hydrogel (NB‐CMC/CMC hydrogel), is developed for emergency wound management. Upon UV irradiation, o‐nitrobenzene in modified carboxymethyl chitosan (CMC) converts to o‐nitrosobenzaldehyde that subsequently crosslinks with amino groups on tissue surface, which endows the LBA with superior tissue adhesive performance. LBA's hemostatic and antibacterial properties can be tuned by the mass ratio of NB‐CMC/CMC. Moreover, it exhibits satisfactory biocompatibility, biodegradability, and the capability to enhance wound healing process. This study sheds new light on the development of a multifunctional hydrogel‐based first‐aid tissue adhesive that can achieve robust tissue adhesion, effectively control bleeding, prevent bacterial infection, and promote wound healing.  相似文献   

3.
Bacterial adhesion and colonization can result in chronic non‐healing wounds. Current hydrophilic wound dressings can release antibacterial agents into the wound exudate, but may result in overhydrated wounds, bacterial overgrowth, and even tissue maceration. Hydrophobic dressings are anti‐fouling, though ineffective to encapsulate and release bactericidal agents. Combining the advantages of hydrophilic and hydrophobic dressings seems difficult, until the development of superwettability surfaces offers an opportunity for omniphobic dressings from intrinsic hydrophilic polymers. Herein, omniphobic porous hydrogel wound dressings loaded with a zinc imidazolate framework 8 (ZIF‐8) are fabricated by a microfluidic‐emulsion‐templating method. The fabricated porous hydrogel membrane with its reentrant architecture is repellent to blood and body fluids, though intrinsically hydrophilic. This unique combination not only reduces the adhesion of harmful microbes, but also enables the encapsulation and release of antibacterial ingredients to wounded sites from hydrophilic polymer networks. As such, the omniphobic metal‐organic frameworks (MOFs)@hydrogel porous wound dressing can inhibit bacteria invasion and enable the controlled release of the bactericidal, anti‐inflammatory, and nontoxic zinc ions. Furthermore, in vivo study of infected full‐thickness skin defect models demonstrates that the dressing also accelerates wound closure by promoting angiogenesis and collagen deposition. Therefore, the omniphobic MOFs@hydrogel porous wound dressings are potentially useful for clinical application.  相似文献   

4.
Most photocrosslinkable hydrogels have inadequacy in either mechanical performance or biodegradability. This issue is addressed by adopting a novel hydrogel design by introducing two different chitosan chains (catechol‐modified methacryloyl chitosan, CMC; methacryloyl chitosan, MC) via the simultaneous crosslinking of carbon–carbon double bonds and catechol‐Fe3+ chelation. This leads to an interpenetrating network of two chitosan chains with high crosslinking‐network density, which enhances mechanical performance including high compressive modulus and high ductility. The chitosan polymers not only endow the hydrogels with good biodegradability and biocompatibility, they also offer intrinsic antibacterial capability. The quinone groups formed by Fe3+ oxidation and protonated amino groups of chitosan polymer further enhance antibacterial property of the hydrogels. Serving as one of the two types of crosslinking mechanisms, the catechol‐Fe3+ chelation can covalently link with amino, thiol, and imidazole groups, which substantially enhance the hydrogel's adhesion to biological tissues. The hydrogel's adhesion to porcine skin shows a lap shear strength of 18.1 kPa, which is 6‐time that of the clinically established Fibrin Glue's adhesion. The hydrogel also has a good hemostatic performance due to the superior tissue adhesion as demonstrated with a hemorrhaging liver model. Furthermore, the hydrogel can remarkably promote healing of bacteria‐infected wound.  相似文献   

5.
The surgical procedure in skin‐tumor therapy usually results in cutaneous defects, and multidrug‐resistant bacterial infection could cause chronic wounds. Here, for the first time, an injectable self‐healing antibacterial bioactive polypeptide‐based hybrid nanosystem is developed for treating multidrug resistant infection, skin‐tumor therapy, and wound healing. The multifunctional hydrogel is successfully prepared through incorporating monodispersed polydopamine functionalized bioactive glass nanoparticles (BGN@PDA) into an antibacterial F127‐ε‐Poly‐L‐lysine hydrogel. The nanocomposites hydrogel displays excellent self‐healing and injectable ability, as well as robust antibacterial activity, especially against multidrug‐resistant bacteria in vitro and in vivo. The nanocomposites hydrogel also demonstrates outstanding photothermal performance with (near‐infrared laser irradiation) NIR irradiation, which could effectively kill the tumor cell (>90%) and inhibit tumor growth (inhibition rate up to 94%) in a subcutaneous skin‐tumor model. In addition, the nanocomposites hydrogel effectively accelerates wound healing in vivo. These results suggest that the BGN‐based nanocomposite hydrogel is a promising candidate for skin‐tumor therapy, wound healing, and anti‐infection. This work may offer a facile strategy to prepare multifunctional bioactive hydrogels for simultaneous tumor therapy, tissue regeneration, and anti‐infection.  相似文献   

6.
In situ hydrogels have attracted considerable attention in tissue engineering because of their minimal invasiveness and ability to match the irregular tissue defects. However, hydrous physiological environments and the high level of moisture in hydrogels severely hamper binding to the target tissue and easily cause wound infection, thereby limiting the effectiveness in wound care management. Thus, forming an intimate assembly of the hydrogel to the tissue and preventing wound infecting still remains a significant challenge. In this study, inspired by mussel adhesive protein, a biomimetic dopamine‐modified ε‐poly‐l ‐lysine‐polyethylene glycol‐based hydrogel (PPD hydrogel) wound dressing is developed in situ using horseradish peroxidase cross‐linking. The biomimetic catechol–Lys residue distribution in PPD polymer provides a catechol–Lys cooperation effect, which endows the PPD hydrogels with superior wet tissue adhesion properties. It is demonstrated that the PPD hydrogel can facilely and intimately integrate with biological tissue and exhibits superior capacity of in vivo hemostatic and accelerated wound repair. In addition, the hydrogels exhibit outstanding anti‐infection property because of the inherent antibacterial ability of ε‐poly‐l ‐lysine. These findings shed new light on the development of mussel‐inspired tissue‐anchored and antibacterial hydrogel materials serving as wound dressings.  相似文献   

7.
To elaborately construct a novel and efficient photothermal antibacterial nanoplatform is a promising strategy for treating bacterial wound infections. In this work, a composite hydrogel (CS/AM NSs hydrogel) with outstanding antibacterial ability is constructed by incorporating antimonene nanosheets (AM NSs) with extraordinary photothermal properties into the network structure of chitosan (CS). When cultured with bacteria, the CS/AM NSs hydrogel can gather bacteria on the surface through the interaction of CS with the bacterial cell membrane. Subsequently, the intrinsic bactericidal property of CS will kill some of the bacteria. After the introduction of near‐infrared laser, the AM NSs effectively convert light energy into localized heat to eliminate residual bacteria. By virtue of the synergistic action between the capture effect of CS and the photothermal effect of AM NSs, the CS/AM NSs hydrogel shows predominant antibacterial behavior against Escherichia coli and Staphylococcus aureus. In vitro assay and in vivo tests of infected full‐thickness defect wound healing confirm the satisfactory biocompatibility and antibacterial ability. Overall, this work reveals that the CS/AM NSs hydrogel holds great potential as a broad‐spectrum antibacterial wound dressing for treating bacteria‐infected wounds. Additionally, this is the first report of the application of AM NSs in the field of antibacterial treatment.  相似文献   

8.
The widespread multidrug resistance resulting from the abuse of antibiotics motivates researchers to explore alternative methods to treat bacterial infections. Recently, the emergence of nanozymes has provided a potential approach to combat bacteria. Such nanozymes can mimic the functions of natural enzymes to induce the production of highly toxic reactive oxygen species (ROS) as an antibacterial. However, the lack of effective interaction between nanozymes and bacteria, and the intrinsic short lifetime and diffusion distance of ROS greatly compromise their bactericidal activity. Furthermore, the dead bacteria left in the infected area can give rise to unexpected tissue inflammation. Herein, for the first time, a nanozyme‐hydrogel is constructed to realize reinforced antibacterials. The nanozyme‐hydrogel with the traits of positive charge and macropore can capture and restrict bacteria in the range of ROS destruction. Significantly, by combining the near‐infrared photothermal property of nanozymes, the nanozyme‐hydrogel can achieve a synergistic bactericidal effect. More importantly, the nanozyme‐hydrogel can eliminate bacteria and reduce the risk of inflammation. In consequence, the current work manifests an original strategy to improve the antibacterial performance of nanozymes, concurrently promote wound healing.  相似文献   

9.
Protein is the key composition of all tissues, which has also been widely used in tissue engineering due to its superior biocompatibility and low immunogenicity. However, natural protein usually lacks active functions such as vascularization, osteo‐induction, and neural differentiation, which limits its further applications as a functional biomaterial. Here, based on the mimetic extracellular matrix feature of bovine serum albumin, injectable polypeptide‐protein hydrogels with vascularization and antibacterial abilities are constructed successfully via coordinative cross‐linking of sulfydryl groups with silver ions (Ag+) for the regeneration of infected wound. In this protein hydrogel system, (Ag+), acting as crosslinkers, can not only provide a sterile microenvironment and a strong and robust antibacterial ability but also introduce K2(SL)6K2 (KK) polypeptide, which endows the hydrogel with vascularization behavior. Furthermore, the in vivo data show that the polypeptide‐protein hydrogel has a considerable collagen deposition and vascularization abilities in the early stage of wound healing, resulting in rapid new tissue regeneration featured with newly appeared hair follicles. Altogether, this newly developed multifunctional 3D polypeptide‐protein hydrogel with vascularization, antibacterial properties, and hair follicle promotion can be a promising approach in biomedical fields such as infected wound healing.  相似文献   

10.
Bioadhesives have been used in clinics among the most prospective alternatives to sutures and staples for wound sealing and repairing; however, they generally have inadequate adhesion to wet surfaces, improper mechanical strength, poor hemostasis, and cytotoxicity. To address these challenges, a robust wet tissue adhesive based on collagen and starch materials (CoSt) is designed in this study. CoSt hydrogels integrate the feature of drainage, molecular penetration and strengthen cross-linking similar to mussel, ivy, and oyster glues, which remove interfacial water quickly, reinforce tough dissipation and involve multiple reversible dynamic interactions. Therefore, they form strong adhesion and sutureless sealing of injured tissues, accompanying actuate robust biointerfaces in direct contact with tissue liquids or blood, resolving the crucial impediments with sutures and commercially accessible adhesives. The novel bioadhesive shows repeatable strong wet tissue adhesiveness (62 ± 4.8 KPa), high sealing performance (153.2 ± 35.1 mmHg), fast self-healing ability, excellent injectability, and shape adaptability. For different hemostatic needs in rat models of tail amputation, skin incision, severe liver, abdominal aorta, and transected nerve injuries, the CoSt hydrogel shows better hemostatic efficiency than fibrin glue because of the coordinate efficacy of tough wound sealing property, outstanding red blood cell arresting capability, and the activation of hemostatic barrier membrane. Moreover, in vivo investigation of the skin injury repair of the rat model validate that CoSt hydrogels accelerate wound healing and functional recovery via skin damage/defects. Tough wet adhesion, quick hemostasis, distinguished biocompatibility, suitability to match irregular-shaped target sites, and good wound healing promotion of the CoSt hydrogel makes it a prospective bioadhesive for various biomedical applications.  相似文献   

11.
Here, a novel macroporous hydrogel dressing is presented that can accelerate wound healing and guard against bacteria‐associated wound infection. Carboxymethyl agarose (CMA) is successfully prepared from agarose. The CMA molecular chains are cross‐linked by hydrogen bonding to form a supramolecular hydrogel, and the hydroxy groups in the CMA molecules complex with Ag+ to promote hydrogel formation. This hydrogel composite exhibits pH‐responsiveness and temperature‐responsiveness and releases Ag+, an antibacterial agent, over a prolonged period of time. Moreover, this hydrogel exhibits outstanding cytocompatibility and hemocompatibility. In vitro and in vivo investigations demonstrate that the hydrogel has enhanced antibacterial and anti‐inflammatory capabilities and can significantly accelerate skin tissue regeneration and wound closure. Astonishingly, the hydrogel can cause the inflammation process to occur earlier and for a shorter amount of time than in a normal process. Given its excellent antibacterial, anti‐inflammatory, and physicochemical properties, the broad application of this hydrogel in bacteria‐associated wound management is anticipated.  相似文献   

12.
Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.  相似文献   

13.
Avoiding wound infection and retaining an appropriate level of moisture around woundz are major challenges in wound care management. Therefore, designing hydrogels with desired antibacterial performance and good water‐maintaining ability is of particular significance to promote the development of wound dressing. Thus a series of hydrogels are prepared by crosslinking of Ag/graphene composites with acrylic acid and N,N′‐methylene bisacrylamide at different mass ratios. The antibacterial performance and accelerated wound‐healing ability of hydrogel are systematically evaluated with the aim of attaining a novel and effective wound dressing. The as‐prepared hydrogel with the optimal Ag to graphene mass ratio of 5:1 (Ag5G1) exhibits stronger antibacterial abilities than other hydrogels. Meanwhile, Ag5G1 hydrogel exhibits excellent biocompatibility, high swelling ratio, and good extensibility. More importantly, in vivo experiments indicate that Ag5G1 hydrogel can significantly accelerate the healing rate of artificial wounds in rats, and histological examination reveals that it helps to successfully reconstruct intact and thickened epidermis during 15 day of healing of impaired wounds. In one word, the present approach can shed new light on designing of antibacterial material like Ag/graphene composite hydrogel with promising applications in wound dressing.  相似文献   

14.
For decades, hydrogen (H2) gas has been recognized as an excellent antioxidant molecule that holds promise in treating many diseases like Alzheimer's, stroke, cancer, and so on. For the first time, active hydrogen is demonstrated to be highly efficient in antibacterial, antibiofilm, and wound‐healing applications, in particular when used in combination with the photothermal effect. As a proof of concept, a biocompatible hydrogen‐releasing PdH nanohydride, displaying on‐demand controlled active hydrogen release property under near‐infrared laser irradiation, is fabricated by incorporating H2 into Pd nanocubes. The obtained PdH nanohydride combines both merits of bioactive hydrogen and photothermal effect of Pd, exhibiting excellent in vitro and in vivo antibacterial activities due to its synergistic hydrogen‐photothermal therapeutic effect. Interestingly, combinational hydrogen‐photothermal treatment is also proved to be an excellent therapeutic methodology in healing rats' wound with serious bacterial infection. Moreover, an in‐depth antibacterial mechanism study reveals that two potential pathways are involved in the synergistic hydrogen‐photothermal antibacterial effect. One is to upregulate bacterial metabolism relevant genes like dmpI, narJ, and nark, which subsequently encode more expression of oxidative metabolic enzymes to generate substantial reactive oxygen species to induce DNA damage and another is to cause severe bacterial membrane damage to release intracellular compounds like DNA.  相似文献   

15.
Inspired by the coordinated multiple healing mechanism of the organism, a four‐armed benzaldehyde‐terminated polyethylene glycol and dodecyl‐modified chitosan hybrid hydrogel with vascular endothelial growth factor (VEGF) encapsulation are presented for efficient and versatile wound healing. The hybrid hydrogel is formed through the reversible Schiff base and possesses self‐healing capability. As the dodecyl tails can insert themselves into and be anchored onto the lipid bilayer of the cell membrane, the hybrid hydrogel has outstanding tissue adhesion, blood cell coagulation and hemostasis, anti‐infection, and cell recruitment functions. Moreover, by loading in and controllably releasing VEGF from the hybrid hydrogel, the processes of cell proliferation and tissue remodeling in the wound bed can be significantly improved. Based on an in vivo study of the multifunctional hybrid hydrogel, it is demonstrated that acute tissue injuries such as vessel bleeding and liver bleeding can be repaired immediately because of the outstanding adhesion and hemostasis features of the hydrogel. Moreover, the chronic wound‐healing process of an infectious full‐thickness skin defect model can also be significantly enhanced by promoting angiogenesis, collagen deposition, macrophage polarization, and granulation tissue formation. Thus, this multifunctional hybrid hydrogel is potentially valuable for clinical applications.  相似文献   

16.
Medical treatment of subcutaneous bacterial abscesses usually involves systemic high‐dose antibiotics and incision‐drainage of the wound. Such an approach suffers from two main deficiencies: bacterial resistance to antibiotics and pain associated with multiple incision‐drainage‐wound packing procedures. Furthermore, the efficacy of high‐dose systemic antibiotics is limited because of the inability to penetrate into the abscess. To address these obstacles, a treatment relying on laser‐induced heating of gold nanoparticles embedded in an injectable silk‐protein hydrogel is presented. Although bactericidal nanoparticle systems have been previously employed based on silver and nitric oxide, they have limitations regarding customization and safety. The method proposed here is safe and uses biocompatible, highly tunable materials: an injectable silk hydrogel and Au nanoparticles, which are effective absorbers at low laser powers such as those provided by hand‐held devices. A single 10‐minute laser treatment of a subcutaneous infection in mice preserves the general tissue architecture, while achieving a bactericidal effect, even resulting in complete eradication in some cases. The unique materials platform presented can provide the basis for an alternative treatment of focal infections.  相似文献   

17.
Nanomaterials open an alternative way for water disinfection. However, limitations such as aggregation, toxicity, and complex post‐treatment block their practical application. In this study, an antibacterial silver/reduced graphene oxide (Ag/rGO) hydrogel consisting of controlled porous rGO network and well‐dispersed Ag nanoparticle is synthesized by a facile hydrothermal reaction. Scanning electron microscopy, transmission electron microscope, X‐ray diffraction, mercury porosimetry, and Fourier transform IR spectroscopy are employed to characterize the Ag/rGO hydrogel. The 3D structure of the rGO network serves as an excellent support for Ag nanoparticles. Disinfection experiments show that the Ag/rGO hydrogel exhibits good efficacy against Escherichia coli when used as a bactericidal filter driven by gravity. The mechanistic study indicates that bacteria cells are inactivated due to cell membrane damage induced by silver nanoparticles and rGO nanosheets when they flow through Ag/rGO hydrogel. Moreover, due to the retaining of Ag by rGO, the leaching level of silver from Ag/rGO hydrogel is considerably lower than the drinking water standard. This study sheds new light on designing antibacterial materials for point‐of‐use water disinfection application.  相似文献   

18.
Wearable and implantable bioelectronics are receiving a great deal of attention because they offer huge promise in personalized healthcare. Currently available bioelectronics generally rely on external aids to form an attachment to the human body, which leads to unstable performance in practical applications. Self‐adhesive bioelectronics are highly desirable for ameliorating these concerns by offering reliable and conformal contact with tissue, and stability and fidelity in the signal detection. However, achieving adequate and long‐term self‐adhesion to soft and wet biological tissues has been a daunting challenge. Recently, mussel‐inspired hydrogels have emerged as promising candidates for the design of self‐adhesive bioelectronics. In addition to self‐adhesiveness, the mussel‐inspired chemistry offers a unique pathway for integrating multiple functional properties to all‐in‐one bioelectronic devices, which have great implications for healthcare applications. In this report, the recent progress in the area of mussel‐inspired self‐adhesive bioelectronics is highlighted by specifically discussing: 1) adhesion mechanism of mussels, 2) mussel‐inspired hydrogels with long‐term and repeatable adhesion, 3) the recent advance in development of hydrogel bioelectronics by reconciling self‐adhesiveness and additional properties including conductivity, toughness, transparency, self‐healing, antibacterial properties, and tolerance to extreme environment, and 4) the challenges and prospects for the future design of the mussel‐inspired self‐adhesive bioelectronics.  相似文献   

19.
Excessive inflammation, bacterial infection, and blocked angiogenesis make diabetic wound healing challenging. Multifunctional wound dressings have several advantages in diabetic wound healing. In addition, the pH regulation of the microenvironment is shown to be a key factor that promotes skin regeneration through cellular immune regulation. However, few reports have focused on the development of functional dressings with the ability to regulate the pH microenvironment and promote diabetic wound healing. This study presents a novel approach for regulating the pH microenvironment of diabetic wound sites using a glycopeptide-based hydrogel consisting of modified hyaluronic acid and poly(6-aminocaproic acid). This hydrogel forms a network through Schiff base interactions and metal complexation, which suppresses inflammation and accelerates angiogenesis during wound healing. Hydrogels not only have adequate mechanical properties and self-healing ability but can also support tissue adhesion. They can also promote the secretion of inducible cAMP early repressor, which promotes the polarization of macrophages toward the M2 type. The in vivo results confirm that hydrogel promotes diabetic wound repair and skin regeneration by exerting rapid anti-inflammatory effects and promoting angiogenesis. Therefore, this hydrogel system represents an effective strategy for treating diabetic wounds.  相似文献   

20.
Antibacterial efficiency can be effectively improved by applying targeting antibacterial materials and strategies. Herein, the successful synthesis of uniform pH‐responsive Ag nanoparticle clusters (AgNCs) is demonstrated, which can collapse and reassemble into nonuniform Ag NPs upon exposure to the acidic microenvironment of bacterial infections. This pH triggered reassembly contributes greatly to the improved antibacterial activities of AgNCs against both methicillin‐resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). The minimum inhibitory concentration and minimum bactericidal concentration against MRSA are as low as 4 and 32 µg mL?1 (which are 8 and 32 µg mL?1 for E. coli), respectively. In vivo skin wound healing experiments confirm AgNCs can serve as an effective wound dressing to accelerate the healing of MRSA infection. The development of responsive AgNCs offers new materials and strategies in targeting antibacterial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号