首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D metals have attracted considerable recent attention for their special physical properties, such as charge density waves, magnetism, and superconductivity. However, despite some recent efforts, the synthesis of ultrathin 2D metals nanosheets down to monolayer thickness remains a significant challenge. Herein, by using atomically flat 2D WSe2 or WS2 as the growth substrate, the synthesis of atomically thin 2D metallic MTe2 (M = V, Nb, Ta) single crystals with the thickness down to the monolayer regime and the creation of atomically thin MTe2/WSe2 (WS2) vertical heterojunctions is reported. Comparison with the growth on the SiO2/Si substrate under the same conditions reveals that the utilization of the dangling‐bond‐free WSe2 or WS2 as the van der Waals epitaxy substrates is crucial for the successful realization of atomically thin MTe2 (M = V, Nb, Ta) nanosheets. It is further shown that the epitaxial grown 2D metals can function as van der Waals contacts for 2D semiconductors with little interface damage and improved electronic performance. This study defines a robust van der Waals epitaxy pathway to ultrathin 2D metals, which is essential for fundamental studies and potential technological applications of this new class of materials at the 2D limit.  相似文献   

2.
Two‐dimensional (2D) van der Waals materials with in‐plane anisotropy are of great interest for directional transport of charge and energy, as exemplified by recent studies on black phosphorus and α‐phase molybdenum trioxide (α‐MO3). Here, a layered van der Waals semiconductor with in‐plane anisotropy built upon the superatomic units of Mo6S3Br6 is reported. This material possesses robust 2D characteristics with a direct gap of 1.64 eV, as determined by scanning tunneling spectroscopy and first‐principles calculations. Polarization‐dependent Raman spectroscopy measurement and density functional theory calculation reveal strong in‐plane anisotropy. These results suggest an effective strategy to explore anisotropic 2D electronic and optoelectronic properties from superatomic building blocks with multifunctionality, emergent properties, and hierarchical control.  相似文献   

3.
As a promising candidate for the much-desired low power consumption spintronic devices, 2D magnetic van der Waals material also provides a versatile platform for the design and control of topological spin textures. In this work on WTe2/CrCl3 bilayer van der Waals heterostructures, a complete Néel-type skyrmion–bimeron–ferromagnet phase transition is demonstrated, accompanied by the evolution of the topological number. This cyclic transition, mediated by a perpendicular magnetic field, is largely driven by the competition between the out-of-plane magnetocrystalline anisotropy and magnetic dipole–dipole interaction. In the presence of a driving current, the Néel-type skyrmion gains a higher velocity yet larger skyrmion Hall angle, in comparison to the bimeron. By incorporating a ferroelectric CuInP2S6 monolayer as a substrate, writing and erasing of skyrmions may be regulated using a ferroelectric polarization. This work sheds light on a novel approach to the design and control of magnetic skyrmions on 2D van der Waals materials.  相似文献   

4.
Research on van der Waals heterostructures based on stacked 2D atomic crystals is intense due to their prominent properties and potential applications for flexible transparent electronics and optoelectronics. Here, nonvolatile memory devices based on floating‐gate field‐effect transistors that are stacked with 2D materials are reported, where few‐layer black phosphorus acts as channel layer, hexagonal boron nitride as tunnel barrier layer, and MoS2 as charge trapping layer. Because of the ambipolar behavior of black phosphorus, electrons and holes can be stored in the MoS2 charge trapping layer. The heterostructures exhibit remarkable erase/program ratio and endurance performance, and can be developed for high‐performance type‐switching memories and reconfigurable inverter logic circuits, indicating that it is promising for application in memory devices completely based on 2D atomic crystals.  相似文献   

5.
GeTe is an interesting material presenting both spontaneous polarization (ferroelectrics) and outstanding electrical conductivity (ideal for thermoelectrics). Pristine GeTe exhibits classic 71° and 109° submicron ferroelectric domains, and near unity thermoelectric figure of merit ZT at 773 K. In this work, it is demonstrated that Bi2Te3 alloying in GeTe lattice can introduce vast Ge vacancies which can further evolve into nanoscale van der Waals gaps upon proper heat treatment, and that these vacancy gaps can induce 180° nanoscale ferroelectric domain boundaries. These microstructures eventually become a hierarchical ferroelectric domain structure, with size varying from submicron to nanoscale and polarization from 71°, 109° to 180°. The establishment of hierarchical ferroelectric domain structure, together with the nanoscale Ge vacancy van der Waals gaps, has profound effects on the electrical and thermal transport properties, resulting in a striking peak thermoelectric ZT ≈ 2.4 at 773 K. These findings might provide an alternative conception for thermoelectric optimization via microstructure modulation.  相似文献   

6.
The recent discoveries of transition‐metal dichalcogenides (TMDs) as novel 2D electronic materials hold great promise to a rich variety of artificial van der Waals (vdWs) heterojunctions and superlattices. Moreover, most of the monolayer TMDs become intrinsically piezoelectric due to the lack of structural centrosymmetry, which offers them a new degree of freedom to interact with external mechanical stimuli. Here, fabrication of flexible vdWs p–n diode by vertically stacking monolayer n‐MoS2 and a few‐layer p‐WSe2 is achieved. Electrical measurement of the junction reveals excellent current rectification behavior with an ideality factor of 1.68 and photovoltaic response is realized. Performance modulation of the photodiode via piezo‐phototronic effect is also demonstrated. The optimized photoresponsivity increases by 86% when introducing a −0.62% compressive strain along MoS2 armchair direction, which originates from realigned energy‐band profile at MoS2/WSe2 interface under strain‐induced piezoelectric polarization charges. This new coupling mode among piezoelectricity, semiconducting, and optical properties in 2D materials provides a new route to strain‐tunable vdWs heterojunctions and may enable the development of novel ultrathin optoelectronics.  相似文献   

7.
In recent years, bismuth iodide (BiI3), a layered metal halide semiconducting light absorber with a wide bandgap of ≈1.8 eV and strong optical absorption in the visible region, has received greater attention for photovoltaic applications. In this study, ultrasensitive visible‐light photodetectors with graphene/BiI3 vertical heterostructures are achieved by van der Waals epitaxies. The BiI3 films deposited on graphene show flatter morphologies and significantly better crystallinities than that of BiI3 films on SiO2 substrates, mainly due to weak van der Waals interactions at the graphene/BiI3 interface. Hybrid photodetectors with highly crystalline graphene/BiI3 heterostructures demonstrate an ultrahigh responsivity of 6 × 106 A W?1, shot‐noise‐limited detectivity of 7 × 1014 Jones, and a relatively short response time of ≈8 ms. Compared to most previously reported graphene‐based hybrid photodetectors, these devices have comparable photosensitivities but a faster response speed and lower operation voltage, which is quite promising for ultralow intensity visible‐light sensors. Moreover, the electronic structure and interfacial chemistry at the graphene/BiI3 heterojunctions are investigated using photoemission spectroscopy. The results give clear evidence that no chemical interactions occur between graphene and BiI3, resulting in the van der Waals epitaxial growth, and the measured band bending consistently illustrates that a photoinduced charge transfer occurs at the graphene/BiI3 interface.  相似文献   

8.
The discovery of van der Waals magnets has provided a new platform for the electrical control of magnetism. Recent experiments have demonstrated that the magnetic properties of van der Waals magnets can be tuned by various gate modulations, although most of them are volatile and require gate voltages no lower than several volts. Here, the realization of nonvolatile control of exchange bias and coercive fields in Fe3GeTe2/MgO heterostructures, and the gate voltage is as low as tens of mV which is two orders of magnitude smaller than those in previous experiments is presented. The discovery of an ionic-irradiated phase formed in Fe3GeTe2 by MgO sputtering revealed that an exchange bias effect can be obtained in this heterostructure and tuned from ≈700 to 0 Oe through voltages ranging from 5 to 20 mV. Owing to the high stability of oxidized Fe3GeTe2, the voltage-driven oxygen incorporated into Fe3GeTe2 from the irradiated phase induces a nonvolatile magnetism modulation that can be retained after turning off the gate voltage. These findings demonstrate a methodology to modulate the magnetism of van der Waals magnets, opening new opportunities to fabricate all-solid, long-retention, and low-dissipation nano-electronic devices using van der Waals materials.  相似文献   

9.
Van der Waals p–n junctions of 2D materials present great potential for electronic devices due to the fascinating properties at the junction interface. In this work, an efficient gas sensor based on planar 2D van der Waals junctions is reported by stacking n‐type and p‐type atomically thin MoS2 films, which are synthesized by chemical vapor deposition (CVD) and soft‐chemistry route, respectively. The electrical conductivity of the van der Waals p–n junctions is found to be strongly affected by the exposure to NO2 at room temperature (RT). The MoS2 p–n junction sensor exhibits an outstanding sensitivity and selectivity to NO2 at RT, which are unavailable in sensors based on individual n‐type or p‐type MoS2. The sensitivity of 20 ppm NO2 is improved by 60 times compared to a p‐type MoS2 sensor, and an extremely low limit of detection of 8 ppb is obtained under ultraviolet irradiation. Complete and very fast sensor recovery is achieved within 30 s. These results are superior to most of the previous reports related to NO2 detection. This work establishes an entirely new sensing platform and proves the feasibility of using such materials for the high‐performance detection of gaseous molecules at RT.  相似文献   

10.
Layered van der Waals (vdW) magnets are prominent playgrounds for developing magnetoelectric, magneto-optic, and spintronic devices. In spintronics, particularly in spincaloritronic applications, low thermal conductivity (κ) is highly desired. Herein, by combining thermal transport measurements with density functional theory calculations, this study demonstrates low κ down to 1 W m−1 K−1 in a typical vdW ferromagnet Cr2Si2Te6. In the paramagnetic state, development of magnetic fluctuations way above Tc = 33 K strongly reduces κ via spin-phonon scattering, leading to low κ ≈ 1 W m−1 K−1 over a wide temperature range, in comparable to that of amorphous silica. In the magnetically ordered state, emergence of resonant magnon-phonon scattering limits κ below ≈2 W m−1 K−1, which will be three times larger if magnetic scatterings are absent. Application of magnetic fields strongly suppresses the spin-phonon scattering, giving rise to large enhancements of κ. This study's calculations well capture these complex behaviors of κ by taking the temperature- and magnetic-field-dependent spin-phonon scattering into account. Realization of low κ, which is easily tunable by magnetic fields in Cr2Si2Te6, may further promote spincaloritronic applications of vdW magnets. This study's theoretical approach may also provide a generic understanding of spin-phonon scattering, which appears to play important roles in various systems.  相似文献   

11.
2D layered van der Waals (vdW) atomic crystals are an emerging class of new materials that are receiving increasing attention owing to their unique properties. In particular, the dangling‐bond‐free surface of 2D materials enables integration of differently dimensioned materials into mixed‐dimensional vdW heterostructures. Such mixed‐dimensional heterostructures herald new opportunities for conducting fundamental nanoscience studies and developing nanoscale electronic/optoelectronic applications. This study presents a 1D ZnO nanowire (n‐type)–2D WSe2 nanosheet (p‐type) vdW heterojunction diode for photodetection and imaging process. After amorphous fluoropolymer passivation, the ZnO–WSe2 diode shows superior performance with a much‐enhanced rectification (ON/OFF) ratio of over 106 and an ideality factor of 3.4–3.6 due to the carbon–fluorine (C? F) dipole effect. This heterojunction device exhibits spectral photoresponses from ultraviolet (400 nm) to near infrared (950 nm). Furthermore, a prototype visible imager is demonstrated using the ZnO–WSe2 heterojunction diode as an imaging pixel. To the best of our knowledge, this is the first demonstration of an optoelectronic device based on a 1D–2D hybrid vdW heterojunction. This approach using a 1D ZnO–2D WSe2 heterojunction paves the way for the further development of electronic/optoelectronic applications using mixed‐dimensional vdW heterostructures.  相似文献   

12.
Biomolecule/graphene van der Waals heterojunction provides a generic platform for designing high‐performance, flexible, and scalable optoelectronics. A key challenge is, in controllable attachment, the biomolecules to form a desired interfacial electronic structure for a high‐efficiency optoelectronic process of photoabsorption, exciton dissociation into photocarriers, carrier transfer, and transport. Here, it is shown that a polarity‐controlled attachment of the Cytochrome c (Cyt c) biomolecules can be achieved on the channel of graphene field effect transistors (GFET). High‐efficiency charge transfer across the formed Cyt c/graphene interface is demonstrated when Cyt c attaches with positively charged side to GFET as predicted by molecular dynamics simulation and confirmed experimentally. This Cyt c/GFET van der Waals heterojunction nanohybrid photodetector exhibits a spectral photoresponsivity resembling the absorption spectrum of the Cyt c, confirming the role of Cty c as the photosensitizer in the device. The high visible photoresponsivity up to 7.57 × 104 A W?1 can be attributed to the high photoconductive gain in exceeding 105 facilitated by the high carrier mobility in graphene. This result therefore demonstrates a viable approach in synthesis of the biomolecule/graphene van der Waals heterojunction optoelectronics using polarity‐controlled biomolecule attachment, which can be expanded for on‐chip printing of high‐performance molecular optoelectronics.  相似文献   

13.
Artificial van der Waals heterostructures of 2D layered materials are attractive from the viewpoint of the possible discovery of new physics together with improved functionalities. Stacking various combinations of atomically thin semiconducting transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te) with a hexagonal crystal structure, typically leads to the formation of a staggered Type II band alignment in the heterostructure, where electrons and holes are confined in different layers. Here, the comprehensive studies are performed on heterostructures prepared from monolayers of WSe2 and MoTe2 using differential reflectance, photoluminescence (PL), and PL excitation spectroscopy. The MoTe2/WSe2 heterostructure shows strong PL from the MoTe2 layer at ≈1.1 eV, which is different from the quenched PL from the WSe2 layer. Moreover, enhancement of PL intensity from the MoTe2 layer is observed because of the near‐unity highly efficient photocarrier transfer from WSe2 to MoTe2. These experimental results suggest that the MoTe2/WSe2 heterostructure has a Type I band alignment where electrons and holes are confined in the MoTe2 layer. The findings extend the diversity and usefulness of ultrathin layered heterostructures based on transition metal dichalcogenides, leading to possibilities toward future optoelectronic applications.  相似文献   

14.
Mechanical friction leads to wear and energy dissipation, and its control is of high importance in new-generation miniature electromechanical devices. 2D materials such as graphene are considered to be excellent solid lubricants due to their ultralow friction and have attracted considerable research interest. Unique friction properties are discovered in various other 2D materials. However, the friction of functional van der Waals materials which have potential applications in novel nanoelectronics, like ferroelectric copper indium thiophosphate, has barely been studied. Herein, the study reports on the observation of inhomogeneous friction behavior existing in copper-deficient CuInP2S6 (Cu0.2In1.26P2S6), which exhibits a nanoscale phase separation of polar and non-polar crystalline phases. The paraelectric In4/3P2S6 phase exhibits higher friction than the ferroelectric CuInP2S6 phase, while phase boundaries between the two phases, interestingly, display the lowest friction. The origin of this phenomenon is attributed to different lattice strains of phases together with the presence of large strains at the nanoscale phase boundaries, which also manifests in the nonuniform tip-sample adhesion force. The findings provide new insights into nanoscale device design and wear behavior of a phase-separated van der Waals ferroelectric, which may help to reduce the power consumption of friction-exhibiting devices and extend their service life.  相似文献   

15.
Emergent properties of 2D materials attract considerable interest in condensed matter physics and materials science due to their distinguished features that are missing in their bulk counterparts. A mainstream in this research field is to broaden the scope of material to expand the horizons of the research area, while developing functional interfaces between different 2D materials is another indispensable research direction. Here, the emergence of electrical conduction at the interface between insulating 2D materials is demonstrated. A new class of van der Waals heterostructures consisting of two sets of insulating transition‐metal dichalcogenides, group‐VI WSe2 and group‐IV TMSe2 (TM = Zr, Hf), is developed via molecular‐beam epitaxy, and it is found that those heterostructures are highly conducting although all the constituent materials are highly insulating. The WSe2/ZrSe2 interface exhibits more conducting behavior than the WSe2/HfSe2 interface, which can be understood by considering the band alignments between constituent materials. Moreover, by increasing Se flux during heterostructure fabrication, the WSe2/ZrSe2 interface becomes more conducting, reaching nearly metallic behavior. Further improvement of the crystalline quality as well as exploring different material combinations are expected to lead to metallic conduction, providing a novel functionality emerging at van der Waals heterostructures.  相似文献   

16.
P‐n junctions based on two dimensional (2D) van der Waals (vdW) heterostructure are one of the most promising alternatives in next‐generation electronics and optoelectronics. By choosing different 2D transition metal dichalcogenides (TMDCs), the p‐n junctions have tailored energy band alignments and exhibit superior performance as photodetectors. The p‐n diodes working at reverse bias commonly have high detectivity due to suppressed dark current but suffer from low responsivity resulting from small quantum efficiency. Greater build‐in electric field in the depletion layer can improve the quantum efficiency by reducing recombination of charge carriers. Herein, Cu9S5, a novel p‐type semiconductor with direct bandgap and high optical absorption coefficient, is synthesized by salt‐assisted chemical vapor deposition (CVD) method. The high density of holes in Cu9S5 endows the constructed p‐n junction, Cu9S5/MoS2, with strong build‐in electric field according to Anderson heterojunction model. Consequently, the Cu9S5/MoS2 p‐n heterojunction has low dark current at reverse bias and high photoresponse under illumination due to the efficient charge separation. The Cu9S5/MoS2 photodetector exhibits good photodetectivity of 1.6 × 1012 Jones and photoresponsivity of 76 A W?1 under illumination. This study demonstrates Cu9S5 as a promising p‐type semiconductor for high‐performance p‐n heterojunction diodes.  相似文献   

17.
Most atomically thin piezoelectrics suffer from weak piezoelectric response or current rectification along the thickness direction, which largely hinders their applications in a vertical crossbar architecture. Therefore, exploring new types of ultrathin materials with strong longitudinal piezoelectric coefficient and rectification is highly desired. In this study, the monolayer of van der Waals CuInP2S6 (CIPS) is successfully exfoliated and its strong piezoelectricity in the out-of-plane direction with an effective coefficient d33eff of ≈5.12 pm V−1, which is one or two orders of magnitude higher than that of most existing monolayer materials with intrinsic d33, is confirmed. A prototype vertical device is further constructed and the current rectification is achieved through the flexoelectricity induced by the scanning tip force. The switching between low and high rectification states can be readily controlled by tuning the mechanical loads. These findings manifest that CIPS possesses promising application in vertical nanoscale piezoelectric devices and provides a novel strategy for achieving a good current rectification in ultrathin piezoelectrics.  相似文献   

18.
Nonvolatile logic devices have attracted intensive research attentions recently for energy efficiency computing, where data computing and storage can be realized in the same device structure. Various approaches have been adopted to build such devices; however, the functionality and versatility are still very limited. Here, 2D van der Waals heterostructures based on direct bandgap materials black phosphorus and rhenium disulfide for the nonvolatile ternary logic operations is demonstrated for the first time with the ultrathin oxide layer from the black phosphorus serving as the charge trapping as well as band‐to‐band tunneling layer. Furthermore, an artificial electronic synapse based on this heterostructure is demonstrated to mimic trilingual synaptic response by changing the input base voltage. Besides, artificial neural network simulation based on the electronic synaptic arrays using the handwritten digits data sets demonstrates a high recognition accuracy of 91.3%. This work provides a path toward realizing multifunctional nonvolatile logic‐in‐memory applications based on novel 2D heterostructures.  相似文献   

19.
Fundamental understanding of charge behavior inside heterostructures is of vital importance for advancing high‐performance optoelectronic applications. However, the charge behavior of 0D‐2D mixed‐dimensional van der Waals heterostructures (MvdWHs) in the photoexcited state remains elusive. In this work, an energy band alignment protocol is adopted to realize effective energy band structure engineering inside 0D‐2D MvdWHs of perovskite quantum dots and MoS2 monolayer with precisely designed typical type I and type II heterostructures, respectively. A profile and in‐depth understanding of interfacial photoinduced charge behavior is determined from two opposite perspectives based on MvdWHs. Sufficient comparison of a series of optical characterization results, including Raman shift, quenched photoluminescence, visualized suppressed fluorescence intensity, and shortened fluorescence lifetime imaging, clearly verifies that interfacial charge behavior can be tailored by varying the band alignment in 0D‐2D MvdWHs. Furthermore, the photoresponse performance and the relatively stronger and weaker photogating effects of such MvdWH‐based phototransistors also demonstrate modulation of interfacial charge behavior in 0D‐2D MvdWHs via energy band structure engineering, which is still feasible for optoelectronic performance optimization. These results are expected to shed light on designing novel functional devices and advancing the development process of 0D‐2D MvdWHs in the foreseeable future.  相似文献   

20.
Ferroelectric memristors represent a promising new generation of devices that have a wide range of applications in memory, digital information processing, and neuromorphic computing. Recently, van der Waals ferroelectric In2Se3 with unique interlinked out-of-plane and in-plane polarizations has enabled multidirectional resistance switching, providing unprecedented flexibility in planar and vertical device integrations. However, the operating mechanisms of these devices have remained unclear. Here, through the demonstration of van der Waals In2Se3-based planar ferroelectric memristors with the device resistance continuously tunable over three orders of magnitude, and by correlating device resistance states, ferroelectric domain configurations, and surface electric potential, the studies reveal that the resistive switching is controlled by the multidomain formations and the associated energy barriers between domains, as opposed to the commonly assumed Schottky barrier modulations at the metal-ferroelectric interface. The findings reveal new device physics through elucidating the microscopic operating mechanisms of this new generation of devices, and provide a critical guide for future device development and integration efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号