首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A new type of microbial fuel cell (MFC), multi-anode/cathode MFC (termed as MAC MFC) containing 12 anodes/cathodes were developed to harvest electric power treating domestic wastewater. The power density of MAC MFCs increased from 300 to 380 mW/m2 at the range of the organic loading rates (0.19-0.66 kg/m3/day). MAC MFCs achieved 80% of contaminant removal at the hydraulic retention time (HRT) of 20 h but the contaminant removal deceased to 66% at the HRT of 5 h. In addition, metal-doped manganese dioxide (MnO2) cathodes were developed to replace the costly platinum cathodes, and exhibited high power density. Cu-MnO2 cathodes produced 465 mW/m2 and Co-MnO2 cathodes produced 500 mW/m2. Due to the cathode fouling of the precipitation of calcium and sodium, a decrease in the power density (from 400 to 150 mW/m2) and an increase in internal resistance (Rin) (from 175 to 225 Ω) were observed in MAC MFCs.  相似文献   

2.
Canteen based composite food waste, which is rich in organic constituents was evaluated as anodic fuel (substrate) in single chambered microbial fuel cell (MFC; mediator less; non-catalyzed graphite electrodes; open-air cathode) to harness electrical energy via anaerobic treatment. The performance of MFC was evaluated with anaerobic consortia as anodic biocatalyst under various increasing organic loading rates (OLR1, 1.01 kg COD/m3-day; OLR2, 1.74 kg COD/m3-day; OLR3, 2.61 kg COD/m3-day). The experimental results illustrated the feasibility of bioelectricity generation from food waste along with treatment but depend on the applied organic load. The maximum power output was observed at OLR2 (295 mV; 390 mA/m2), followed by OLR3 (250 mV; 311 mA/m2) and OLR1 (188 mV; 211 mA/m2). The variation in substrate degradation has also showed a relation with organic load applied (OLR1, 44.28% (0.47 kg COD/m3-day); OLR2, 64.83% (1.13 kg COD/m3-day); OLR3, 46.28% (1.39 kg COD/m3-day)). The increase in loading from OLR1 to OLR2, the catalytic ability of biocatalyst increased from 7.5 mA (24 h) to 11.22 mA (24 h) along with the increase in power generation from 39.38 mW/m2 to 107.89 mW/m2. At the higher OLR (OLR3), the bioelectrocatalytic current decreased to 5.3 mA (24 h) along with decrement in power to 78.92 mW/m2. The optimum organic load (OLR2) showed maximal catalytic activity and power output. Fuel cell behavior with respect to polarization, anode potential and bio-electrochemical behavior supported the higher performance of MFC at OLR2. Specific power yield was also observed to be higher at OLR2 (0.320 W/kg CODR) indicating the combined process efficiency. Volatile fatty acids generation and pH profiles also correlated well with the observed results.  相似文献   

3.
Due to the growing demand for energy in the present-day world, it is obligatory to look for alternative sources of renewable energy. The derivation of power from microbial fuel cells (MFCs) has developed at the vanguard of the alternative source of renewable energy through the concomitant treatment of wastewater. Hence, the process development of MFC is obligatory for creating a sustainable source of renewable energy through the treatment of wastewater. To that end, an attempt was taken in the present study for sustainable power generation from single chamber microbial fuel cell (SCMFC) using Pseudomonas aeruginosa-MTCC-7814. The experiments were carried out in a batch process for 15 days with real dairy wastewater (RDW) having initial chemical oxygen demand (COD) of 8000 mg/L. The open-circuit voltage (OCV) found after 72 h of batch operation was 658 mV, which was maximum within the batch operation. The columbic efficiency (CE) of the batch process was found to be 46.59%. The maximum specific growth rate (μmax) of Pseudomonas aeruginosa-MTCC-7814 was found to be 0.432 day?1 during batch operation. However, saturation constant (Ks) and inhibition coefficient (Ki) were calculated as 608.74 mg/L, and 6582 mg/L, respectively. The maximum current density (Imax) and saturation constant (Kc) predicted from batch kinetics study were 132 mA/m2 and 321 mg/L, respectively, which has resemblance with the data obtained from experiments. The maximum current density and power density from experiments were found to be 161 mA/m2 and 34.82 mW/m2, respectively. Results showed that a higher power density and current density values were obtained from the present study as compared to the earlier reports that utilized wastewater as the substrate for the MFC. Thus, the study suggests that Pseudomonas aeruginosa, (MTCC-7814) can be used as a promising biocatalyst in MFC for sustainable power generation through the utilization of wastewater treatment.  相似文献   

4.
Microbial fuel cells (MFCs) are bio-electrochemical devices that use microbial metabolic processes to convert organic substances into electricity with high efficiency. In this study, the performance of a soil-based MFC using urine as a substrate was assessed using polarization and power density curves. A single-chamber, membrane-less MFC with a carbon-felt air cathode and a carbon-felt anode fully buried in biologically active soil was constructed to examine the impact of urine treatment on the performance of the MFC. The peak power of the urine-treated MFC was 124.16 mW/m2 and was obtained 24 hours after the first urine addition; a control MFC showed a value of 65.40 mW/m2 in the same period. The treated MFC produced an average power of 70.75 mW/m2 up to 21 days after the initial urine addition; the control MFC gave an average value of 4.508 mW/m2 over the same period. The average internal resistances of the treated MFC and the control MFC obtained after the initial treatment were 269.94 and 1627.89 Ω, respectively. This study demonstrates the potential of human urine to reduce internal losses in soil MFCs and to provide stable power densities across various external resistors. These results are propitious for future advancements in soil MFCs for power generation utilizing human urine (a readily available source of nutrients) as a substrate.  相似文献   

5.
Photoautotrophic algae Scenedismus obliquus could attach on the surface of a cathode electrode and produced oxygen for electricity generation in microbial fuel cell (MFC). Oxygen concentration by algae aeration in the cathode chamber increased from 0 to 15.7 mg/l within 12-h, and a voltage generation of 0.47 ± 0.03 V was obtained with 1000 Ω external resistance. In polarization test, MFC with algal aeration exhibited the maximum power density of 153 mW/m2, which was 32% higher than the value (116 mW/m2) with mechanical aeration at oxygen concentration of 5.9 mg/l. The internal resistance of MFC with algal aeration decreased in ohmic resistance (5.9–5.2 Ω) and charge transfer resistance (9.6–7.2 Ω) over 72-h operation. Cyclic voltammetry of cathode during algal aeration revealed higher reduction current of −9.3 mA compared to mechanical aeration (−4.7 mA).  相似文献   

6.
This study examined the influence of H2-producing mixed cultures on improving power generation using air-cathode microbial fuel cells (MFCs) inoculated with heat-treated anaerobic sludge. The MFCs installed with graphite brush anode generated higher power than the MFCs with carbon cloth anode, regardless heat treatment of anaerobic sludge. When the graphite brush anode-MFCs were inoculated selectively with H2-producing bacteria by heat treatment, power production was not improved (about 490 mW/m2) in batch mode operation, but for slightly increased in carbon cloth anode-MFCs (from 0.16 to 2.0 mW/m2). Although H+/H2 produced from H2-producing bacteria can contribute to the performance of MFCs, suspended biomass did not affect the power density or potential, but the Coulombic efficiency (CE) increased. A batch test shows that propionate and acetate were used effectively for electricity generation, whereas butyrate made a minor contribution. H2-producing mixed cultures do not affect the improvement in power generation and seed sludge, regardless of the pretreatment, can be used directly for the MFC performance.  相似文献   

7.
This study presents research results on electricity production from waste activated sludge using MFCs during stabilization process. Different MFC configurations equipped with various electrodes were used. Voltage measurements were continuously done during 35 days of MFC operation. Experimental results showed that bioelectricity generation was linked to volatile solids (VS) and protein reductions as a fraction of extracellular polymeric substances (EPS). Double chamber MFC reactor equipped with graphite electrodes had better power and current densities as 312.98 mW/m2 and 39.07 μA/cm2 while single chamber MFC equipped with titanium electrodes revealed better power and current densities as 97.60 mW/m2 and 17.63 μA/cm2, respectively. Molecular results indicated that power outputs of MFCs effected by diverse microbial communities in anode biofilms. Although organic matter degradation is reported as 35%–55% VS reduction for digesters, this research provided a promising approach for sludge stabilization with enhanced degrading of organic matters up to 75% by using MFCs.  相似文献   

8.
Optimization of the cathode catalyst is critical to the study of microbial fuel cells (MFCs). By using the open circuit voltage and power density as evaluation standards, this study focused on the use of polyaniline (PANI)/multi‐walled carbon nanotube (MWNT) composites as cathode catalysts for the replacement of platinum (Pt) in an air‐cathode MFC, which was fed with synthetic wastewater. Scanning electron microscopy and linear scan voltammogram methods were used to evaluate the morphology and electrocatalytic activity of cathodes. A maximum power density of 476 mW/m2 was obtained with a 75% wt PANI/MWNT composite cathode, which was higher than the maximum power density of 367 mW/m2 obtained with a pure MWNT cathode but lower than the maximum power density of 541 mW/m2 obtained with a Pt/C cathode. Thus, the use of PANI/MWNT composites may be a suitable alternative to a Pt/C catalyst in MFCs. PANI/MWNT composites were initially used as cathodic catalysts to replace Pt/C catalysts, which enhanced the power generation of MFCs and substantially reduced their cost. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Increasing efforts have been devoted to enhancing the cathode activity towards oxygen reduction and improve power generation of air breathing microbial fuel cells. Exploring non-precious metal and highly active cathodic catalyst plays a key role in improving cathode performance. Our work aims to investigate the electrocatalyst behavior and power output of the single-chamber MFC equipped with carbon nanotubes hybridized molybdenum disulfide nanocomposites (CNT/MoS2) cathode. MoS2 nanosheets embedded into the CNTs network structure is synthesized by a facile hydrothermal method. The CNT/MoS2-MFC achieves a maximum power density of 53.0 mW m−2, which is much higher than those MFCs with pure CNTs (21.4 mW m−2) or solely MoS2 (14.4 mW m−2) cathode. The oxygen reduction reaction (ORR) test also demonstrates a promoted electrocatalytic activity of synthesized material, which may be attributed to the special interlaced structure and abundant oxygen chemisorption sites of CNT/MoS2. Such CNTs-based noble-metal-free catalyst presents a new approach to the application of MFCs cathode materials.  相似文献   

10.
Production of sustainable and clean energy through oxidation of biodegradable materials was carried out in a novel stack of microbial fuel cells (MFCs). Saccharomyces cerevisiae as an active biocatalyst was used for power generation. The novel stack of MFCs consist of four units was fabricated and operated in continuous mode. Pure glucose as substrate was used with concentration of 30 g l−1 along with 200 μmol l−1 of natural red (NR) as a mediator in the anode and 400 μmol l−1 of potassium permanganate as oxidizing agent in the cathode. Polarimetry technique was employed to analyze the single cell as well as stack electrical performance. Performance of the MFCs stack was evaluated with respect to amount of electricity generation. Maximum current and power generation in the stack of MFC were 6447 mA.m−2 and 2003 mW.m−2, respectively. Columbic efficiency of 22 percent was achieved at parallel connection. At the end of process, image of the outer surface of graphite electrode was taken by Atomic Force Microscope at magnification of 5000. The high electrical performance of MFCs was attributed to the uniform growth of microorganism on the graphite surface which was confirmed by the obtained images.  相似文献   

11.
This study assessed the feasibility of vanadium pentoxide (V2O5) as a novel cathode catalyst material in air-cathode single chamber microbial fuel cells (SCMFCs). The V2O5 nanorod catalyst was synthesized using a hydrothermal method. MFCs with different cathode catalyst loadings were studied. Cyclic voltammetry (CV) was used to examine the electrochemical behavior of the catalysts in the MFCs. The V2O5 cathode catalyst constructed with a double loading MFC exhibited the highest maximum power density of 1073 ± 18 mW m−2 (OCP; 691±4 mV) compared with 447 ± 12 mW m−2 (OCP; 594 ± 5 mV) and 936 ± 15 mW m−2 (OCP; 647±5 mV) for the single loading MFC and triple loading MFC, respectively. The power density of MFC with double loaded V2O5 is comparable to the traditional Pt/C cathode (2067 ± 25 mW m−2, OCP; 821 ± 4 mV), which covers up to 55% of the performance of Pt/C. This finding highlights the potential of the V2O5 cathode as an inexpensive catalyst material for MFCs that may have commercial applications.  相似文献   

12.
This study aims at investigating the effects of platinum (Pt) loadings on the cathodic reactions in Single Chamber Microbial Fuel Cells (SCMFCs) and developing cost-effective MFC operational protocols. The power generation of SCMFCs was examined with different Pt loadings (0.005–1 mgPt/cm2) on cathodes. The results showed that the power generation of the SCMFCs with 0.5–1 mgPt/cm2 were the highest in the tests, decreased 10–15% at 0.01–0.25 mgPt/cm2, and decreased further 10–15% at 0.005 mgPt/cm2. The SCMFCs with Pt-free cathode (graphite) had the lowest power generation. In addition, the power generation of SCMFCs with different Pt loadings were compared in raw wastewater (Chemical oxygen demand (COD): 0.36 g/L) and wastewater enriched with sodium acetate (COD: 2.95 g/L). The solution conductivity in SCMFCs decreased with the degradation of organic substrates. Daily polarization curves (VI) showed a decrease in current generation and an increase in ohmic losses over the operational period (8 days). The SCMFCs (with 0.5–1 mgPt/cm2 at cathode) fed with wastewater and sodium acetate (NaOAc) reached the highest power generation (786 mW/m2), while the SCMFCs (with 0.5–1 mgPt/cm2 at cathode) fed only with wastewater obtained the lower power generation (81 mW/m2). The study demonstrated that lowering the Pt loadings in two magnitude orders (1 to 0.01, 0.5 to 0.005 mgPt/cm2) only reduced the power generation of 15–30%, and this reduction of the power generation become less substantial with the decrease in the solution conductivity of SCMFCs.  相似文献   

13.
In this study, we apply a short-term voltage (0.2–0.8 V) to both crude glycerol (CG) and an anaerobic digestion (AD) effluent in a single-chamber microbial fuel cell (MFC) for power production. This improves the bioelectrogenesis in both CG (in MFC-1) and the AD effluent (in MFC-2), but higher power generation is attained in MFC-2. The use of domestic and synthetic wastewaters in the AD process leads to the generation of 195 and 350 mL H2/L-medium, respectively. MFC-2 performs better than MFC-1 in terms of both voltage generation and chemical oxygen demand (COD) reduction. The application of 0.8 V yields a power density of 311 mW/m2 (1.94 times higher than that of the control (160 mW/m2)). In addition, MFC-2 exhibits a 70% COD removal at 0.8 V, which decreases to 56% at 0.2 V. Thus, the application of a short-term voltage in MFC can stimulate both bioelectrogenesis and COD removal.  相似文献   

14.
Power generation in Microbial fuel cells (MFCs) is a function of various physico-chemical as well as biological parameters. In this study, we have examined the effect of ionic strength, cation exchanger and inoculum age on power generation in a mediator MFC with methylene blue as electron mediator using Enterobacter cloacae IIT-BT08. The effect of ionic strength was studied using NaCl in the anode chamber of a two chambered salt-bridge MFC at concentrations of 5 mM, 10 mM and 15 mM. Maximum power density of 12.8 mW/m2 was observed when 10 mM NaCl was used. Corresponding current density was noted to be 35.5 mA/m2. Effect of cation exchanger was observed by replacing salt-bridge with a proton exchange membrane of equal surface area. When the salt-bridge was replaced by a proton exchange membrane, a 3-fold increase in the power density was observed. Power density and current density of 37.8 mW/m2 and 110.3 mA/m2 respectively were detected. The influence of the pre-inoculum on the MFC was studied using E. cloacae IIT-BT08 grown for 12, 14, 16 and 18 h. It was observed that 16 h grown culture when inoculated in the anode chamber gave the maximum power output. Power density and current density of 68 mW/m2 and 168 mA/m2 respectively were obtained. We demonstrate from these results that both physico-chemical as well as biological parameters need to be optimized for improving the power generation in MFCs.  相似文献   

15.
In this study, a cathode catalyst for microbial fuel cells (MFCs) was successfully prepared by a simple step-by-step hydrothermal method. Graphene oxide (GO) and layered double hydroxide (LDH) composite substrate and three-dimensional covalent organic framework materials (COF-300) grown vertically on the surface were observed. (003), (006), (012), (018), (110) were the obvious crystal plane of the composite COF-300@NiAl-LDH/GO. C, O, N, Ni, Na, Al and other elements existed on the surface of the composite. The maximum power density produced by COF-300@NiAl-LDH/GO-MFC was 481.69 mW/m2, which was 1.22 times of Ti3AlC2/NiCoAl-LDH-MFC (393.82 mW/m2) and 2.21 times of Ti3AlC2-MFC (217.73 mW/m2). The maximum voltage of COF-300@NiAl-LDH/GO-MFC was 518 mV and it could remain stable within 8 days. GO was used as the substrate to improve the conductivity; LDH was used to enhance the catalytic activity and electron transfer rate; The three-dimensional bulk COF-300 attached to the surface enhanced the surface area and catalytic properties; The above jointly promoted oxygen reduction reaction of cathode, so as to improve MFC performances.  相似文献   

16.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

17.
The preparation of high-performance anode materials is of significance for enhanced power generation in microbial fuel cells (MFCs). Herein, porous carbon monolith was prepared by simple freeze drying of wax gourd and subsequent pyrolysis (WGC). β-FeOOH was coated on WGC to further improve the performance of the anode (β-FeOOH/WGC). The maximum power density of the MFCs with WGC and β-FeOOH/WGC anode was 913.9 and 1355.1 mW/m2 respectively, which was much higher than that of the control (558.2 mW/m2). WGC possessed three-dimensional pore structure, nitrogen and oxygen-containing functional groups, which endowed it with satisfactory bacterial loading. Improved MFC performance after β-FeOOH modification could be ascribed to two aspects: β-FeOOH enhanced the electrochemical activity and decrease the transfer resistance; β-FeOOH was conducive to exoelectrogens formation. This study demonstrated that the synthesis of β-FeOOH modified carbon monolith anode offered an efficient route to enhance the power generation of MFCs.  相似文献   

18.
Recirculation is one of the effective techniques used to upsurge the output of anaerobic reactors. The present study investigates the effect of recirculation of anolyte on bioelectricity generation using food waste leachate in two chamber Microbial Fuel Cell (MFC) with carbon electrodes and Ultrex as proton exchange membrane (PEM). The MFCs are operated in fed-batch mode at varying COD concentrations of 500–1250 mg/L with the hydraulic retention time of 17 h for recirculation. Maximum current density, power density and columbic efficiencies of 100.34 mA/m2, 14.42 mW/m2 and 10.25% respectively for MFC without recirculation and 150.30 mA/m2, 29.23 mW/m2 and 14.22% respectively for MFC provided with recirculation are obtained at COD of 1250 mg/L. Comparative performance analysis of the cells indicates that recirculation enhances the bioelectricity production in MFC. Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analyses are also done to find the changes in PEM.  相似文献   

19.
MFCs are becoming a stronger contender in the area of alternative energy sources and show great promise in utilising a wide variety of organic sources. This paper describes the utilisation of neat undiluted urine as the main feedstock for different types of individual MFCs and stacks of small-scale MFCs, for direct electricity production, with conversion efficiencies of >50%. The smallest MFC (1.4 mL total volume) produced equal amounts of power to that produced by larger MFCs (6.25 mL), resulting in increased power densities. Power densities of 4.93 mW/m2 (absolute power of 1.5 mW) were recorded when 48 small-scale MFCs were connected as a stack and fed with urine. This study demonstrates the feasibility of using urine as an untreated fuel and that improved power outputs can be achieved through MFC miniaturisation and multiplication into stacks.  相似文献   

20.
This study demonstrated electricity generation from rice straw without pretreatment in a two-chambered microbial fuel cell (MFC) inoculated with a mixed culture of cellulose-degrading bacteria (CDB). The power density reached 145 mW/m2 with an initial rice straw concentration of 1 g/L; while the coulombic efficiencies (CEs) ranged from 54.3 to 45.3%, corresponding to initial rice straw concentrations of 0.5–1 g/L. Stackable MFCs in series and parallel produced an open circuit voltage of 2.17 and 0.723 V, respectively, using hexacyanoferrate as the catholyte. The maximum power for serial connection of three stacked MFCs was 490 mW/m2 (0.5 mA). In parallelly stacked MFCs, the current levels were approximately 3-fold (1.5 mA) higher than those produced from the serial connection. These results demonstrated that electricity can be produced from rice straw by exploiting CDB as the biocatalyst. Thus, this method provides a promising way to utilize rice straw for bioenergy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号