首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Hydrogen gas production by photo-fermentation of dark fermentation effluent of acid hydrolyzed wheat starch was investigated at different hydraulic residence times (HRT = 1-10 days). Pure Rhodobacter sphaeroides (NRRL B-1727) culture was used in continuous photo-fermentation by periodic feeding and effluent removal. The highest daily hydrogen gas production (85 ml d−1) was obtained at HRT = 4 days (96 h) while the highest hydrogen yield (1200 ml H2 g−1 TVFA) was realized at HRT = 196 h. Specific and volumetric hydrogen formation rates were also the highest at HRT = 96 h. Steady-state biomass concentrations and biomass yields increased with increasing HRT. TVFA loading rates of 0.32 g L−1 d−1 and 0.51 g L−1 d−1 resulted in the highest hydrogen yield and formation rate, respectively. Hydrogen gas yield obtained in this study compares favorably with the relevant literature reports probably due to operation by periodic feeding and effluent removal.  相似文献   

2.
Hydrogen gas production from acid hydrolyzed waste wheat starch by combined dark and photo-fermentation was investigated in continuous mode with periodic feeding and effluent removal. A mixture of heat treated anaerobic sludge and Rhodobacter sphaeroides (NRRL-B 1727) were used as the seed culture for dark and light fermentations, respectively with biomass ratio of Rhodobacter/sludge = 3. Hydraulic residence time (HRT) was changed between 1 and 8 days by adjusting the feeding periods. Ground waste wheat was acid hydrolyzed at pH = 3 and 121 °C for 30 min using an autoclave and the resulting sugar solution was used as the substrate for combined fermentation after pH adjustment and nutrient addition. The highest daily hydrogen gas production (41 ml d−1), hydrogen yield (470 ml g−1 total sugar = 3.4 mol H2 mol−1glucose), volumetric and specific hydrogen production rates were obtained at the HRT of 8 days. The highest biomass and the lowest total volatile fatty acids (TVFA) concentrations were also realized at HRT = 8 days indicating VFA fermentation by Rhodobacter sp. at high HRTs. The lowest total sugar loading rate of 0.625 g L−1 d−1 resulted in the highest hydrogen yield and formation rate. Hydrogen gas production by combined fermentation with periodic feeding was proven to be an effective method resulting in high hydrogen yields at long HRTs.  相似文献   

3.
Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal was investigated at different feeding intervals. Ground wheat was acid hydrolyzed at pH = 3 and T = 121 °C for 30 min using an autoclave. The resulting sugar solution was subjected to dark fermentation with periodic feeding and effluent removal. The feed solution contained 9 ± 0.5 g L−1 total sugar supplemented with some nutrients. Depending on the feeding intervals hydraulic residence time (HRT) was varied between 6 and 60 h. Steady-state daily hydrogen production increased with decreasing HRT. The highest daily hydrogen production (305 ml d−1) and volumetric hydrogen production rate (1220 ml H2 L−1 d−1) were obtained at HRT of 6 h. Hydrogen yield (130 ml H2 g−1 total sugar) reached the highest level at HRT = 24 h. Effluent total sugar concentration decreased, biomass concentration and yield increased with increasing HRT indicating more effective sugar fermentation at high HRTs. Dark fermentation end product profile shifted from acetic to butyric acid with increasing HRT. High acetic/butyric acid ratio obtained at low HRTs resulted in high hydrogen yields.  相似文献   

4.
Three different Rhodobacter sphaeroides (RS) strains (RS–NRRL, RS–DSMZ and RS–RV) and their combinations were used for light fermentation of dark fermentation effluent of ground wheat containing volatile fatty acids (VFA). In terms of cumulative hydrogen formation, RS–NRRL performed better than the other two strains producing 48 ml H2 in 180 h. However, RS–RV resulted in the highest hydrogen yield of 250 ml H2 g−1 TVFA. Specific hydrogen production rate (SHPR) with the RS–NRRL was also better in comparison to the others (13.8 ml H2 g−1 biomass h−1). When combinations of those three strains were used, RS–RV + RS–DSMZ resulted in the highest cumulative hydrogen formation (90 ml H2 in 330 h). However, hydrogen yield (693 ml H2 g−1 TVFA) and SHPR (12.1 ml H2 g−1 biomass h−1) were higher with the combination of the three different strains. On the basis of Gompertz equation coefficients mixed culture of the three different strains gave the highest cumulative hydrogen and formation rate probably due to synergistic interaction among the strains. The effects of initial TVFA and NH4–N concentrations on hydrogen formation were investigated for the mixed culture of the three strains. The optimum TVFA and NH4–N concentrations maximizing the hydrogen formation were determined as 2350 and 47 mg L−1, respectively.  相似文献   

5.
Dark fermentation effluents of wheat powder (WP) solution containing different concentrations of volatile fatty acids (VFAs) were subjected to low voltage (1–3 V) DC current to produce hydrogen gas. Graphite and copper electrodes were tested and the copper electrode was found to be more effective due to higher electrical conductivity. The effects of solution pH (2–7), applied voltage (1–3 V) and the total VFA (TVFA) concentration (1–5 g L−1) on hydrogen gas production were investigated. Hydrogen production increased with decreasing pH and became maximum at pH = 2. Increases in applied voltage and the TVFA concentration also increased the cumulative hydrogen formation. The most suitable conditions for the highest cumulative hydrogen production was pH = 2, with 3 V applied voltage and 5 g TVFA L−1. Up to 110 ml hydrogen gas was obtained with 5 g L−1 TVFA at pH = 5.8 and 2 V applied voltage within 37.5 h. The highest energy efficiency (56%) was obtained with the 2 V applied voltage and 10.85 g L−1 TVFA. Hydrogen production by electrolysis of water in control experiments was negligible for pH > 4. Hydrogen production by electrohydrolysis of VFA containing anaerobic treatment effluents was found to be an effective method with high energy efficiency.  相似文献   

6.
This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose–peptone (GP) and starch–peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412 mmol-H2/L/d at HRT of 2 and 3 h, respectively. At HRT > 8 h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that Clostridium sporogenes and Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor, Lactobacillus plantarum, Propionispira arboris, and Clostridium butyricum were found to be dominant populations, but the presence of P. arboris at HRT > 3 h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors.  相似文献   

7.
Though ethanol-type fermentation has many advantages for improving hydrogen production rate (HPR) in continuously mode hydrogen producing system, information on this fermentation is very deficient. The effect of hydraulic retention time (HRT) on biohydrogen production and operational stability of ethanol-type fermentation was investigated in a continuous stirred tank reactor (CSTR) using molasses as substrate. Five HRTs were examined, ranging from 4 to 10 h. At HRT 5 h, the highest HPR of 12.27 mmol L−1 h−1 was obtained from ethanol-type fermentation in the pH range of 4.3–4.4. During the whole operation process, ethanol, butyrate and acetate were the predominant metabolites. A total COD concentration of ethanol and acetate accounted for above 73.3% of total soluble microbial products. Linear regression showed that HPR and ethanol production rate were proportionately correlated at all HRTs which could be expressed as y = 0.9821x − 3.5151 (r2 = 0.9498). It is meaningful that the proposed recovery of both hydrogen and ethanol from fermentation process can improve energy production rate and economic profit. Results demonstrated that the best energy production rate was 15.50 kJ L−1 h−1, occurred at HRT = 5 h.  相似文献   

8.
Dark fermentation effluent of wheat powder solution was subjected to light fermentation for bio-hydrogen production using different light sources and intensities. Tungsten, fluorescent, infrared (IR), halogen lamps were used as light sources with a light intensity of 270 Wm−2 along with sunlight. Pure culture of Rhodobacter sphaeroides-RV was used in batch light fermentation experiments. Halogen lamp was found to be the most suitable light source yielding the highest cumulative hydrogen formation (CHF, 252 ml) and yield (781 ml H2 g−1 TVFA). In the second set of experiments, light fermentations were performed at different light intensities (1–10 klux) using halogen lamp. The optimum light intensity was found to be 5 klux (approx. 176 Wm−2) resulting in the highest CHF (88 ml) and hydrogen yield (1037 ml H2 g−1TVFA). Hydrogen formation was limited by the availability of light at low light intensities below 5 klux and was inhibited by the excess light above 5 klux.  相似文献   

9.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

10.
Continuous combined fermentation of ground wheat starch was realized in an annular-hybrid bioreactor (AHB) for hydrogen gas production. A mixture of pure cultures of Clostridium beijerinkii (DSMZ-791) and Rhodobacter sphaeroides-RV were used as seed cultures in combined fermentation. The feed contained 5 g L−1 ground wheat with some nutrient supplementation. Effects of hydraulic residence time (HRT) on the rate and yield of hydrogen gas formation were investigated. Steady-state daily hydrogen production decreased but, hydrogen yield increased with increasing HRT. The highest hydrogen yield was 90 ml g−1 starch at HRT of 6 days. Hydrolysis of starch and fermentation of glucose to volatile fatty acids (VFA) were readily realized at all HRTs. However, slow conversion of VFAs to H2 and CO2 by photo-fermentation caused accumulation of VFAs in the medium. Specific and volumetric rates of hydrogen formation also decreased with increasing HRT. High hydrogen yields obtained at high HRTs are due to partial fermentation of VFAs by Rhodobacter sp. The system should be operated at HRTs longer than 5 days for effective hydrogen gas formation by the dark and photo-fermentation bacteria.  相似文献   

11.
This study evaluated hydrogen production in an anaerobic fluidized bed reactor (AFBR) fed with glucose-based synthetic wastewater. Particles of expanded clay (2.8–3.35 mm) were used as a support material for biomass immobilization. The reactor was operated with hydraulic retention times (HRT) ranging from 8 to 1 h. The hydrogen yield production increased from 1.41 to 2.49 mol H2 mol−1 glucose as HRT decreased from 8 to 2 h. However, when HRT was 1 h, there was a slight decrease to 2.41 mol H2 mol−1 glucose. The biogas produced was composed of H2 and CO2, and the H2 content increased from 8% to 35% as HRT decreased. The major soluble metabolites during H2 fermentation were acetic acid (HAc) and butyric acid (HBu), accounting for 36.1–53.3% and 37.7–44.9% of total soluble metabolites, respectively. Overall, the results demonstrate the potential of using expanded clay as support material for hydrogen production in AFBRs.  相似文献   

12.
Biological mycelia pellets, which are formed spontaneously in the process of Aspergillus niger Y3 fermentation, were explored as carrier for immobilization of Clostridium sp. T2 to improve hydrogen production. Batch fermentation tests showed that optimal dosage and size of mycelia pellets for hydrogen production were 0.350 g 150 ml−1 medium and 1.5 mm. Under these conditions, hydrogen production with immobilized cells on mycelia pellets was further investigated in continuous stirred-tank reactor (CSTR) with hydraulic retention time (HRT) ranging from 12 to 8 h. It obtained that the maximum hydrogen production rate reached 2.76 mmol H2 L−1 h−1 at 10 h HRT, which was 40.8% higher than the carrier-free process, but slightly lower than the counterpart immobilized in sodium alginate with the value of 3.15 mmol H2 L−1 h−1. SEM observation showed that abundant cells were closely adhered to mycelia pellets. The present results indicate the potential of using mycelia pellets as biological carrier for enhancing hydrogen production.  相似文献   

13.
In the present study, the growth and hydrogen production of Rhodobacter sphaeroides O.U. 001, was investigated in media containing five different volatile fatty acids (VFA) individually (malate, acetate, propionate, butyrate and lactate) and in media containing mixtures of these acids that reflect the composition of dark fermentation effluents. The highest hydrogen production rate was obtained in malate (24 mlhydrogen/lreactor h) and the highest biomass concentration was obtained in acetate containing media (1.65 g/l). The substrate conversion efficiencies for different volatile fatty acids were found to vary between 14 and 50%. The malate and butyrate consumption rates were first order with consumption rate constants of 0.026 h−1 and 0.015 h−1, respectively. In the case of substrate mixtures, it was observed that the bacteria consumed acetate first, followed by propionate and then butyrate. It was also found that the consumption rate of the main substrate significantly increased when the minor substrates were depleted.  相似文献   

14.
15.
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment.  相似文献   

16.
We evaluated the feasibility of improving the scale of hydrogen (H2) production from sugar cane distillery effluent using co-cultures of Citrobacter freundii 01, Enterobacter aerogenes E10 and Rhodopseudomonas palustris P2 at 100 m3 scale. The culture conditions at 100 ml and 2 L scales were optimized in minimal medium and we observed that the co-culture of the above three strains enhanced H2 productivity significantly. Results at the 100 m3 scale revealed a maximum of 21.38 kg of H2, corresponding to 10692.6 mol, which was obtained through batch method at 40 h from reducing sugar (3862.3 mol) as glucose. The average yield of H2 was 2.76 mol mol−1 glucose, and the rate of H2 production was estimated as 0.53 kg/100 m3/h. Our results demonstrate the utility of distillery effluent as a source of clean alternative energy and provide insights into treatment for industrial exploitation.  相似文献   

17.
Hydrogen gas production from sugar solution derived from acid hydrolysis of ground wheat starch by photo-fermentation was investigated. Three different pure strains of Rhodobacter sphaeroides (RV, NRLL and DSZM) were used in batch experiments to select the most suitable strain. The ground wheat was hydrolyzed in acid solution at pH = 3 and 90 °C in an autoclave for 15 min. The resulting sugar solution was used for hydrogen production by photo-fermentation after neutralization and nutrient addition. R. sphaeroides RV resulted in the highest cumulative hydrogen gas formation (178 ml), hydrogen yield (1.23 mol H2 mol−1 glucose) and specific hydrogen production rate (46 ml H2 g−1 biomass h−1) at 5 g l−1 initial total sugar concentration among the other pure cultures. Effects of initial sugar concentration on photo-fermentation performance were investigated by varying sugar concentration between 2.2 and 13 g l−1 using the pure culture of R. sphaeroides RV. Cumulative hydrogen volume increased from 30 to 232 ml when total sugar concentration was increased from 2.2 to 8.5 g l−1. Further increases in initial sugar concentration resulted in decreases in cumulative hydrogen formation. The highest hydrogen formation rate (3.69 ml h−1) and yield (1.23 mol H2 mol−1 glucose) were obtained at a sugar concentration of 5 g l−1.  相似文献   

18.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

19.
An anaerobic fermentation process to produce hydrogen from cornstalk wastes was systematically investigated in this work. Batch experiments numbered series I, II and III were designed to investigate the effects of acid pretreatment, enzymatic hydrolysis (enzymatic temperature, enzymatic time and enzymatic pH) on hydrogen production by using the natural sludge as inoculant. A maximum cumulative H2 yield of 126.22 ml g−1-CS (Cornstalk, or 146.94 ml g−1-TS, Total Solid) and an average H2 production rate of 9.58 ml g−1-CS h−1 were obtained from fermentation cornstalk with a concentration of 20 g/L and an initial pH of 7.0 at 36 °C through an optimal pretreatment process. The optimal process was that the substrate was soaked with an HCl concentration of 0.6 wt% at 90 °C for 2 h, and subsequently enzymatic hydrolysis for 72 h at 50 °C and pH 4.8 before fermentation. The biogas consisted of only H2 and CO2. In addition, the fermentation system was the typical ethanol-type fermentation according to ethanol and acetate as the main liquid by-products.  相似文献   

20.
In the context of hydrogen production by microalgae, the growth of Chlamydomonas reinhardtii was characterized under autotrophic and mixotrophic conditions in a fully controlled photobioreactor (PBR). The combined effect of light transfer conditions, as represented by the illuminated fraction γ, with acetate consumption was observed upon establishment of anoxia. Anoxia was reached in batch cultures when γ was close to 1 (almost fully illuminated culture) in mixotrophic conditions while a value of γ ≈ 0.46 in autotrophic conditions was not sufficient. Based on these results, continuous hydrogen production was established in a cylindrical PBR operated in luminostat with constant illumination and in mixotrophic conditions. Maximum hydrogen gas production was equal to 1.4 ± 0.1 mlH2 l−1 h−1 for photon flux density of 110 μmol m−2 s−1 and reactor illuminated fraction of γ = 0.5. Carbon mass balance was realized, emphasizing the necessity to work in strictly autotrophic conditions for hydrogen production with no concomitant CO2 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号