首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.  相似文献   

2.
Ni, Co and Ni–Co bimetallic catalysts of different ratios were synthesized by the Incipient Wetness Impregnation Method (IWI) over Magnesium Aluminate support, keeping the total metal loading 15 wt.%, characterized and tested for the reforming of methane with carbon dioxide at 873 K and 1 atm pressure. Magnesium Aluminate supported catalysts were also compared with Al2O3 supported Ni catalysts with similar metal loading. The results obtained revealed that MgAl2O4 exhibited excellent thermal stability as compared to Al2O3 as support at higher temperatures. Ni–Co catalyst, with an explicit Ni:Co (3:1) ratio for the 75Ni25Co/MgAl2O4 provided the highest CH4 conversion and was about 1.82 times that of the 100Ni/MgAl2O4; CO2 conversion also followed similar trends. Co-existence of Ni and Co with synergic effect in an explicit Ni:Co (3:1) ratio reduced the reduction temperature and increased the amount of metal in 75Ni25Co/MgAl2O4. CH4 and CO2 conversions, TOFDRM, H2: CO ratios and catalyst deactivations were related to the concentrations of the Ni–Co and particularly an explicit ratio of 3:1 for the Ni:Co in 75Ni25Co/MgAl2O4 catalyst provided the best initial & final conversions, TOFDRM and H2:CO ratio. Detail carbon analysis suggested that the type of coke deposited on 75Ni25Co/MgAl2O4 after the DRM reaction is of the same nature and are originating from the CH4 cracking reaction and are of reactive type.  相似文献   

3.
Ordered mesoporous alumina facilely synthesized via improved evaporation-induced self-assembly (EISA) strategy was provided with large specific surface area, big pore volume, uniform pore size and excellent thermal stability. The obtained mesoporous material was used as the carrier of the Ni based catalysts for carbon dioxide reforming of methane. These mesoporous catalysts performed high catalytic activity and long stability. Typically, the catalytic conversions of the CH4 and CO2 were greatly close to the equilibrium conversion and no deactivation was observed during the 100 h long lifetime test. The advantageous structural properties of ordered mesoporous alumina contributed to high dispersion of the Ni particles among the mesoporous framework, which further accounted for the good catalytic activity due to more “accessible” Ni active sites for the reactants. The “confinement effect” of the mesopores could effectively prevent the thermal sintering of the Ni nanoparticles to some extent, committed to its long-term catalytic stability. Besides, the mesoporous catalysts possessed enhanced ability to withstand coke, although not any modifiers had been added. Properties of the coke over the mesoporous catalyst were also carefully investigated. Therefore, the ordered mesoporous alumina was a promising catalyst support for the carbon dioxide reforming with methane.  相似文献   

4.
The structural “memory effect” of a hydrotalcite (HT)-derived mixed oxide is utilized to prepare a shell–core Ni/Mg–Al catalyst for ethanol steam reforming (ESR). The reconstruction proceeds rapidly in a Ni2+ nitrate solution on the outer layer of the Mg–Al mixed oxide particle, being accompanied with the growth of large flake-like sheets. A part of Ni2+ ions can incorporate into the reconstructed HT-like structure, leading to the formation of the shell-type Ni loading catalyst after calcination. At 700 °C, the shell–core catalysts with much lower Ni contents perform better activities than that of the bulk Ni/Mg–Al catalyst prepared directly via the calcination of the HT-like precursor. Further investigations reveal that temperature and space-time significantly affect the contribution of WGS, CH4 reforming reactions to the product distribution in the ESR reaction. Most interestingly, C2H4 is observed in the reactions carried out at 700 °C and very low space-time.  相似文献   

5.
Ni and Co supported on SiO2 and Al2O3 silica cloth thin layer catalysts have been investigated in the catalytic decomposition of natural gas (CDNG) reaction. The influence of carrier nature and reaction temperature was evaluated with the aim to individuate the key factors affecting coke formation. Both Ni and Co silica supported catalysts, due to the low metal support interaction (MSI), promotes the formation of carbon filament with particles at tip. On the contrary, in case alumina was used as support, metals strongly interact with surface thus depressing both the metal sintering and the detachment of particles from catalyst surface. In such cases, carbon grows on metal particle with a “base mechanism” while particles remain well anchored on the catalyst surface. This allowed to realize a cyclic dual-step process based on methane decomposition and catalyst oxygen regeneration without deactivation of catalyst. Technological considerations have led to conclude that the implement of a process based on decomposition and regeneration of catalyst by oxidation requires the development of a robust catalytic system characterized by both a strong MSI and a well defined particle size distribution. In particular, the catalyst should be able to operate at high temperature, necessary to reach high methane conversion values (> 90%), avoiding at the same time the formation of both the carbon filaments with metal at tip or the encapsulating carbon which drastically deactivate the catalyst.  相似文献   

6.
Catalytic CO2 methanation is a potential solution for conversion of CO2 into valuable products, and the catalyst plays a crucial role on the CO2 conversion and CH4 selectivity. However, some details involved in the CO2 methanation over the carbon supported Ni catalysts are not yet fully understood. In this work, commercial coal char (CC) supported Ni catalysts were designed and prepared by two different methods (impregnation-thermal treatment method and thermal treatment-impregnation method) for CO2 methanation. Effects of the preparation conditions (including the thermal treatment temperature and time, the mass ratio of CC:Ni and the preparation method), as well as the reaction temperature of CO2 methanation, were investigated on the catalyst morphology, reducibility, structure and catalytic performance. Fibrous Ni-CC catalyst is achieved and shows high CO2 conversion (72.9%–100%) and CH4 selectivity (>99.0%) during the 600-min methanation process. Adverse changes of the catalyst surface and textural properties, reducibility, particle size and morphology are the potential factors leading to the catalyst deactivation, and possible solutions resistant to the deactivation were analyzed and discussed. The CO2 methanation mechanism with the CO route was proposed based on the oxidation-reduction cycle of Ni in this work.  相似文献   

7.
Methane reforming with CO2 over Samaria-promoted Ni and Co/SBA-15 was comparatively investigated. The Co, Ni (10%wt) and Sm (0.5, 1 and 1.5%wt) ions were introduced by two-solvent impregnation method. The Ni and Co catalysts with/without promoter, were examined by N2 adsorption-desorption, x-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) methods, and then evaluated in CO2 reforming of methane. The XRD and TEM results indicated that Ni and Co/SBA-15 promoted by 1%wt of Samaria, had the smallest NiO and Co3O4 particles size and the highest dispersion; as a result, they would rather studying dry reforming of methane test. Catalytic results indicated that Samaria promoted Ni/SBA-15 had the highest conversion (CH4 conversion~58% at 700 °C), while a remarkable decrease of catalytic activity was observed over Samaria-promoted Co/SBA-15 (CH4 conversion~25% at 700 °C). The positive effect of Samaria on Ni/SBA-15 catalyst activity is probably due to smaller NiO particles, higher NiO dispersion and lower trend to carbon deposition. On the contrary, the negative effect of Samaria on Co/SBA-15 catalyst activity is maybe due to Co oxidation to inactive phase and sintering of Co particles in high temperatures.  相似文献   

8.
Hydrogen will be an important energy carrier in the future and hydrogen production has drawn a great deal of attention to its advantages in efficiency and environmental benefit. Catalytic steam reforming in this study was carried out in a fixed bed tubular reactor with sepiolite catalysts. Sepiolite catalysts modified with nickel (Ni) and molybdenum (Mo) were prepared using the precipitation method. Influential parameters such as temperature, catalyst, steam to carbon ratio (S/C), the feeding space velocity (WHSV), reforming length, and activity of catalyst were investigated and the yields of H2, CO, CH4, and CO2 were obtained. The result of this experiment shows that the acidified sepiolite catalyst with addition of the Ni and Mo greatly improves the activities of catalyst and effectively increases the yield of hydrogen. The favorable reaction condition is as follows: reaction temperature is 700–800 °C; S/C is 16–18; the feeding space velocity is 1.5–2.2 h−1, respectively.  相似文献   

9.
A series of ordered mesoporous MgO–Al2O3 composite oxides with various Mg containing were facilely synthesized via one-pot evaporation induced self-assembly strategy. These materials with advantageous structural properties and superior thermal stabilities were used as the supports of Ni based catalysts for CO2 reforming of CH4. These mesoporous catalysts behaved both high catalytic activities and long term stabilities toward this reaction. The effects of the mesopore structure and MgO basic modifier on catalytic performances were carefully studied. Specifically, their mesoporous frameworks could accommodate the gaseous reactants with more “accessible” Ni active centers; the “confinement effect” of the mesopores would effectively suppress the thermal sintering of the Ni nanoparticles; the modified MgO basic sites would enhance the chemisorption and activation of CO2. Consequently, the catalytic activities and stabilities of these catalysts were greatly promoted. Therefore, the present materials were considered as promising catalyst supports for CO2 reforming of CH4.  相似文献   

10.
Ni based phosphate zirconium catalysts were prepared by impregnation technique and used under CH4 dry reforming conditions. Catalysts (x%Ni/8%PO4–Zr, where x = 5, 10, 15 or 20) were characterized by nitrogen physical adsorption-desorption, X-ray diffraction, temperature programmed reduction, CO2 and NH3 temperature programmed desorption, thermal gravimetric analysis and transmission electron microscopy (TEM-EDAX). Catalysts displayed a typical mesoporous structure and different reducibility grade as a function of Ni loading, diagnostic of a different extent of metal-support interaction. Activity and stability strongly depend upon Ni loading while the best performance was observed for catalyst characterized by a Ni loading of 10 wt%. The CO2-TPD profiles of spent catalysts indicated that such catalyst had more tendency to gasify coke formed over the catalyst surface. TGA analysis of used catalysts quantitatively showed that catalysts at higher Ni loading deactivated as result of huge graphitic carbon formation on catalyst surface. On the contrary, system 10%Ni8%PO4/ZrO2 turns out to be an excellent candidate to conduct the methane reforming reaction with CO2 without coke formation at high CH4 and CO2 conversions. Phosphate play a fundamental role in promoting Ni–ZrO2 interaction which reflects in the stabilization of catalytic system against metal sintering and coke formation.  相似文献   

11.
Active and stable Ni–Fe–SiO2 catalysts prepared by sol–gel method were employed for direct decomposition of undiluted methane to produce hydrogen and carbon filaments at 823 K and 923 K. The results indicated that the lifetime of Ni–Fe–SiO2 catalysts was much longer than Ni–SiO2 catalyst at a higher reaction temperature such as 923 K, however, a reverse trend was shown when methane decomposition took place at a lower reaction temperature such as 823 K. XRD studies suggested that iron atoms had entered into the Ni lattice and Ni–Fe alloy was formed in Ni–Fe–SiO2 catalysts. The structure of the carbon filaments generated over Ni–SiO2 and Ni–Fe–SiO2 was quite different. TEM studies showed that “multi-walled” carbon filaments were formed over 75%Ni–25%SiO2 catalyst, while “bamboo-shaped” carbon filaments generated over 35%Ni–40%Fe–25%SiO2 catalysts at 923 K. Raman spectra of the generated carbons demonstrated that the graphitic order of the “multi-walled” carbon filaments was lower than that of the “bamboo-shaped” carbon filaments.  相似文献   

12.
Catalytic reforming of three typical bio-oil model compounds, phenol, acetic acid and hydroxyacetone, has been carried out over a Ni/nano-Al2O3 catalyst. Al2O3, in the form of nano-rods of length approximately 40 nm, was selected as the catalyst support. The catalyst showed superior performance in terms of activity and stability. The conversions for phenol, acetic acid and hydroxyacetone reached 84.2%, 98.2% and 98.7%, respectively, at the reaction temperature of 700 °C. The corresponding hydrogen yields were 69%, 87% and 97.2%. The catalyst maintained its high reactivity for more than 10 h in the catalytic reforming of three model compounds. The influences of steam to carbon ratio, catalyst loading and Ni content in the catalyst on the reforming performance were also investigated. In addition, the possible decomposition pathways for phenol, acetic acid and hydroxyacetone are proposed.  相似文献   

13.
Running dry reforming of methane (DRM) reaction at low-temperature is highly regarded to increase thermal efficiency. However, the process requires a robust catalyst that has a strong ability to activate both CH4 and CO2 as well as strong resistance against deactivation at the reaction conditions. Thus, this paper examines the prospect of DRM reaction at low temperature (400–600 °C) over CeO2–MgO supported Nickel (Ni/CeO2–MgO) catalysts. The catalysts were synthesized and characterized by XRD, N2 adsorption/desorption, FE-SEM, H2-TPR, and TPD-CO2 methods. The results revealed that Ni/CeO2–MgO catalysts possess suitable BET specific surface, pore volume, reducibility and basic sites, typical of heterogeneous catalysts required for DRM reaction. Remarkably, the activity of the catalysts at lower temperature reaction indicates the workability of the catalysts to activate both CH4 and CO2 at 400 °C. Increasing Ni loading and reaction temperature has gradually increased CH4 conversion. 20 wt% Ni/CeO2–MgO catalyst, CH4 conversion reached 17% at 400 °C while at 900 °C it was 97.6% with considerable stability during the time on stream. Whereas, CO2 conversions were 18.4% and 98.9% at 400 °C and 900 °C, respectively. Additionally, a higher CO2 conversion was obtained over the catalysts with 15 wt% Ni content when the temperature was higher than 600 °C. This is because of the balance between a high number of Ni active sites and high basicity. The characterization of the used catalyst by TGA, FE-SEM and Raman Spectroscopy confirmed the presence of amorphous carbon at lower temperature reaction and carbon nanotubes at higher temperature.  相似文献   

14.
Ni–Co–B hollow nanospheres were synthesized by the galvanic replacement reaction using a Co–B amorphous alloy and a NiCl2 solution as the template and additional reagent, respectively. The Ni–Co–B hollow nanospheres that were synthesized in 60 min (Ni–Co–B-60) showed the best catalytic activity at 303 K, with a hydrogen production rate of 6400 mLhydrogenmin?1gcatalyst?1 and activation energy of 33.1 kJ/mol for the NaBH4 hydrolysis reaction. The high catalytic activity was attributed to the high surface area of the hollow structure and the electronic effect. The transfer of an electron from B to Co resulted in higher electron density at Co sites. It was also found that Ni was dispersed on the Co–B alloy surface as result of the galvanic replacement reaction. This, in turn, facilitated an efficient hydrolysis reaction to enhance the hydrogen production rate. The parameters that influenced the hydrolysis of NaBH4 over Ni–Co–B hollow nanospheres (e.g., NaOH concentration, reaction temperature, and catalyst loading) were investigated. The reusability test results show that the catalyst is active, even after the fifth run. Thus, the Ni–Co–B hollow nanospheres are a practical material for the generation of hydrogen from chemical hydrides.  相似文献   

15.
The catalytic steam reforming of acetic acid over both Ni/ and Co/Ce0·75Zr0·25O2 (CZO) catalysts in the temperature range of 450–650 °C and steam-to-carbon molar ratios of 3–9 was studied. It was found that the complete acetic acid conversion was achieved for all the conditions investigated. Nevertheless, the C–C bond cleavage conversion was attained less than the acetic acid conversion at a given condition due to carbon deposition on the catalyst. However, hydrogen yield was obtained in the same trend as C–C bond cleavage conversion as well. The results revealed that the CZO as an active support prefers to promote the ketonization reaction to the C-C bond cleavage reaction at a lower temperature, and vice versa at a higher temperature. The Ni/CZO catalyst exhibits higher C–C bond cleavage conversion than the Co/CZO catalyst particularly at 650 °C whereas the Co/CZO catalyst is more active for ketonization reaction at low temperatures. However, as an increase in reaction temperature, the Co/CZO catalyst promotes ketonization reaction more pronouncedly toward aldol-condensation reaction thus giving rise to the carbon deposition. The results deduced from the effect of space velocity on the activity and product distribution suggested that the steam reforming of acetic acid over Ni/CZO catalyst is dominated by decomposition of acetic acid, while that of Co/CZO catalyst by ketonization reaction.  相似文献   

16.
Uniformly dispersed Ni catalysts supported on SiO2 wash-coated Ni foams were synthesized by the wet impregnation method and successfully applied for methane catalytic decomposition (MCD) at atmospheric pressure. All the prepared catalysts exhibited high catalytic stability. The effects of reaction temperature, space velocity, Ni loading on the MCD performance and the morphologies of the as-prepared CNTs were investigated. The results show that high reaction temperature, low space velocity, and high Ni loading enhanced the hydrogen concentration in the outlet gases. Additionally, SEM and TEM observations indicate that the size (diameter) distribution of the as-prepared CNTs became broader with increasing reaction temperature and Ni loading, respectively. The uniform nickel-foam-supported CNTs and relatively high concentration of hydrogen were obtained simultaneously at 650 °C and at a weight hourly space velocity of 1 L g−1cat h−1 by the catalyst with 20 wt% Ni. Raman spectroscopy reveals that the uniform MCNTs had a high degree of amorphization.  相似文献   

17.
Silicon nitride supported nickel catalyst prepared by impregnation using nickel nitrate solution was employed for the carbon dioxide reforming of methane. The catalyst was tested at 800 °C under atmospheric pressure. The influences of Ni loading and calcination temperature on the catalytic performance were investigated. It was found that the nickel loading and calcination temperature strongly influenced the catalytic performance. Over the 7 wt. % Ni/Si3N4 catalyst calcined at 400 °C, the conversions of CH4 and CO2 can achieve 95% and 91%, respectively. Appropriate interaction between the metal and the basic support makes the catalyst more resistant to sintering and coking, and thus an excellent stability.  相似文献   

18.
A series of mesoporous nanocrystalline ceria–zirconia solid solutions with different Ce/Zr ratios were facilely synthesized via improved evaporation induced self-assembly strategy. The obtained materials with advantageous structural properties and excellent thermal stabilities were characterized by various techniques and investigated as the supports of the Ni based catalysts for CO2 reforming of CH4. The effects of Ce/Zr ratio and mesopore structure on promoting catalytic performances had been investigated. It was found that the catalyst supported on carrier with 50/50 Ce/Zr ratio behaved the highest catalytic activity. The reason for this might be that the mesoporous ceria–zirconia solid solution carrier contributed to the activation of CO2 by its own redox property. Compared with the catalyst without obvious mesostructure, the current mesoporous catalyst performed higher catalytic activity and better catalytic stability, demonstrating the advantages of the mesostructure. On the one hand, the predominant textural properties such as large surface area, big pore volume, and uniform channel helped to the high dispersion of the Ni particles among the mesoporous framework, finally leading to higher catalytic activity. On the other hand, the mesoporous matrix could stabilize the Ni nanoparticles under severe reduction and reaction conditions by the “confinement effect”, committed to better catalytic stability. Besides, the properties of the coke over the mesoporous catalyst were also carefully studied. Generally, these mesoporous nanocrystalline ceria–zirconia solid solutions were a series of promising catalytic carriers for CO2 reforming of CH4.  相似文献   

19.
Hydrogen production by steam reforming of ethanol (SRE) was studied using steam-to-ethanol ratio of 3:1, between the temperature range of 150–450 °C over metal and metal oxide nanoparticle catalysts (Ni, Co, Pt and Rh) supported on carbon nanotubes (CNTs) and compared to a commercial catalyst (Ni/Al2O3). The aim was to find out the suitability of CNTs supports with metal nanoparticles for the SRE reactions at low temperatures. The idea to develop CNT-based catalysts that have high selectivity for H2 is one of the driving forces for this study. The catalytic performance was evaluated in terms of ethanol conversion, product gas composition, hydrogen yield and selectivity to hydrogen. The Co/CNT and Ni/CNT catalysts were found to have the highest activity and selectivity towards hydrogen formation among the catalysts studied. Almost complete ethanol conversion is achieved over the Ni/CNT catalyst at 400 °C. The highest hydrogen yield of 2.5 is, however, obtained over the Co/CNT catalyst at 450 °C. The formation of CO and CH4 was very low over the Co/CNT catalyst compared to all the other tested catalysts. The Pt and Rh CNT-based catalysts were found to have low activity and selectivity in the SRE reaction. Hydrogen production via steam reforming of ethanol at low temperatures using especially Co/CNT catalyst has thus potential in the future in e.g. the fuel cell applications.  相似文献   

20.
A novel method for synthesis of carbon-supported cobalt boride catalyst was developed for hydrogen generation from catalytic hydrolysis of NaBH4 solution. The activated carbon and carbon black supported catalysts prepared by “reduction–precipitation” method were found to be much more active than those prepared by conventional “impregnation–reduction” method inspite of the same Co content. A maximum hydrogen generation was achieved using carbon black supported Co–B, which lowers the activation energy to 56.7 kJ mol−1. The effects of NaOH concentration (1–15 wt.%), NaBH4 concentration (5–20 wt.%) and reaction temperature (25–40 °C) on the performance of the most active catalyst (Co–B/CB) were investigated in detail. The results indicated that this catalyst can be used in a hydrogen generator for mobile applications such as PEMFC systems due to its high catalytic activity and simple preparation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号