首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 832 毫秒
1.
Although electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) provides high sensitivity for measuring the important element, calcium, in biological specimens, the technique has been difficult to apply routinely, because of long acquisition times required. Here we describe a refinement of the complementary analytical technique of energy-filtered transmission electron microscopy (EFTEM), which enables rapid imaging of large cellular regions and measurement of calcium concentrations approaching physiological levels. Extraction of precise quantitative information is possible by averaging large numbers of pixels that are contained in organelles of interest. We employ a modified two-window approach in which the behavior of the background signal in the EELS spectrum can be modeled as a function of specimen thickness t expressed in terms of the inelastic mean free path λ. By acquiring pairs of images, one above and one below the Ca L2,3 edge, together with zero-loss and unfiltered images, which are used to determine a relative thickness (t/λ) map, it is possible to correct the Ca L2,3 signal for plural scattering. We have evaluated the detection limits of this technique by considering several sources of systematic errors and applied this method to determine mitochondrial total calcium concentrations in freeze-dried cryosections of rapidly frozen stimulated neurons. By analyzing 0.1 μm2 areas of specimen regions that do not contain calcium, it was found that the standard deviation in the measurement of Ca concentrations was about 20 mmol/kg dry weight, corresponding to a Ca:C atomic fraction of approximately 2×10−4. Calcium concentrations in peripheral mitochondria of recently depolarized, and therefore stimulated and Ca loaded, frog sympathetic neurons were in reasonable agreement with previous data.  相似文献   

2.
The ultrastructural distribution and quantification of calcium in mast cells prepared by anhydrous processing was investigated by energy-filtering transmission electron microscopy (EFTEM) using a Zeiss 902 electron microscope. Optimal conditions for calcium detection were determined using inorganic (calcium phosphate) and organic (calcium-loaded chelex beads) standards with known amounts of calcium. Electron energy-loss spectroscopy (EELS) revealed calcium at the L2,3 edge and also at the M2,3 edge for all specimens examined. Comparison with X-ray microanalysis confirmed the results obtained with EELS. Electron spectroscopic imaging (ESI) was applied for mapping calcium both in standards and in cells and we showed that mast cell granules were the main site of calcium localization. Although, results have shown that a combination of analytical techniques is required to obtain reliable results.  相似文献   

3.
During a fluctuation electron microscopy (FEM) study of disordered carbons, we found that samples containing C60 exhibit a normalized variance peak at 7.1 nm−1 that appears to be a unique indicator of tight curvature in layered materials. This peak is associated with the characteristic in-plane carbon–carbon bond distance of ∼0.14 nm in graphene. Diffraction from this spacing is normally forbidden in planar graphene (and graphite), but becomes allowed when the layer structure is interrupted. Such interruptions arise at the edges of graphite fragments and also when 5-rings are incorporated into a layer. We show that the curvature induced by a high density of 5-rings, such as that in C60, can dominate the variance peak at 7.1 nm−1. FEM simulations reveal that the variance peak at ∼7.1 nm−1, which we label F1, is one of several fullerene-signature peaks, with others occurring at Q values of 10.6 nm−1 (F2) and 12.4 nm−1 (F3). We conclude that FEM is a sensitive method for detecting dilute quantities of highly curved pentagon-rich fullerenes, such as C60, when dispersed within disordered graphitic carbon.  相似文献   

4.
High-resolution electron energy-loss spectroscopy (HR-EELS), achieved by attaching electron monochromators to transmission electron microscopes (TEM), has proved to be a powerful tool for measuring bandgaps. However, the method itself is still uncertain, due to Cerenkov loss and surface effects that can potentially influence the quality of EELS data. In the present study, we achieved an energy resolution of about 0.13 eV at 0.1 s, with a spatial resolution of a few nanometers, using a monochromated STEM-EELS technique. We also assessed various methods of bandgap measurement for a-SiNx and SiO2 thin dielectric films. It was found that the linear fit method was more reliable than the onset reading method in avoiding the effects of Cerenkov loss and specimen thickness. The bandgap of the SiO2 was estimated to be 8.95 eV, and those of a-SiNx with N/Si ratios of 1.46, 1.20 and 0.92 were measured as 5.3, 4.1 and 2.9 eV, respectively. These bandgap-measurement results using monochromated STEM-EELS were compared with those using Auger electron spectroscopy (AES)-reflective EELS (REELS).  相似文献   

5.
We report on the energy resolution properties of an Omega-type monochromator. In a TEM/STEM setup with a MANDOLINE filter and extreme stability of the high voltage and the filter current, an energy resolution of 43 meV for 0.1 s exposure time and 87 meV for 100 s exposure time was measured at 200 kV with 40 meV monochromator slit width. The monochromized zero-loss peaks are additionally characterized by their edge steepness. Moreover a drop in the monochromized zero-loss peak by 103 after 260 meV can be obtained even without deconvolution. For small fields of view, the energy resolution mostly does not depend on the MANDOLINE filter. With the Corrected OMEGA filter an energy resolution of 41 meV was measured for 0.03 s exposure time at 200 kV with 30 meV monochromator slit width and 77 meV for 50 s exposure time at 80 kV with 40 meV monochromator slit width. Furthermore, the MANDOLINE filter’s setup and imaging properties are presented such as isochromaticity (<5 meV) and transmissivity (T(1 eV)=17,400 nm2), which set a new standard for imaging energy filters and allow EFTEM spectrum imaging with energy windows ≤200 meV and reasonable fields of view.  相似文献   

6.
Here, we demonstrate that non-dipole allowed d–d excitations in NiO can be measured by electron energy loss spectroscopy (EELS) in transmission electron microscopes (TEM). Strong excitations from 3A2g ground states to 3T1g excited states are measured at 1.7 and 3 eV when transferred momentum are beyond 1.5 Å−1. We show that these d–d excitations can be collected with a nanometrical resolution in a dedicated scanning transmission electron microscope (STEM) by setting a good compromise between the convergence angle of the electron probe and the collected transferred momentum. This work opens new possibilities for the study of strongly correlated materials on a nanoscale.  相似文献   

7.
Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 105 e/nm2 despite the fact that observable damage begins at doses as low as 103 e/nm2. The resulting spatial resolution of 10 nm is 5–10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.  相似文献   

8.
The dielectric properties of LaB6 crystals and the plasmonic behavior of LaB6 nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB6 crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB6 nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB6 nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB6 crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB6 area.  相似文献   

9.
We present and compare two different imaging techniques for plasmonic excitations in metallic nanoparticles based on high energy-resolution electron energy-loss spectroscopy in a monochromated transmission electron microscope. We demonstrate that a recently developed monochromated energy-filtering (EFTEM) approach can be used in addition to the well established scanning technique to directly obtain plasmon images in the energy range below 1 eV. The EFTEM technique is described in detail, and a double experiment performed on the same, triangular gold nanoparticle compares equivalent data acquired by both techniques, respectively.  相似文献   

10.
The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L2,3-ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H2O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.  相似文献   

11.
With a steady temperature increase under high vacuum (HV) in an environmental scanning electronic microscope, we observed charge-free characterization and fine secondary electron (SE) images in focus for insulating ceramics (alumina (Al2O3), aluminum nitride (AlN), pure magnesium silicate (Mg2SiO4)). The sample current Isc increased from −8.18×10−13 to 2.76×10−7 A for Al2O3 and −9.28×10−12 to 2.77×10−6 A for AlN with the temperature increased from 298 to 633 K. The surface conductance σ increased from 5.6×10−13 to 5.0×10−11/Ω for Al2O3 and 1.1×10−12 to 1.0×10−7/Ω for AlN with the temperature increased from 363 to 593 K. The SE image contrast obtained via heating approach in high vacuum with an Everhart–Thornley SE-detector was better than that via conventional approach of electron–ion neutralization in low vacuum (LV) with a gaseous SE-detector. The differences of compensation temperatures for charge effects indicate dielectric and thermal properties, and band structures of insulators. The charge compensation mechanisms of heating approach mainly relate to accelerated release of trapped electrons on insulating surface and to increase of electron emission yield by heating.  相似文献   

12.
Elemental mapping in the energy filtering transmission electron microscope (EFTEM) can be extended into three dimensions (3D) by acquiring a series of two‐dimensional (2D) core‐edge images from a specimen oriented over a range of tilt angles, and then reconstructing the volume using tomographic methods. EFTEM has been applied to imaging the distribution of biological molecules in 2D, e.g. nucleic acid and protein, in sections of plastic‐embedded cells, but no systematic study has been undertaken to assess the extent to which beam damage limits the available information in 3D. To address this question, 2D elemental maps of phosphorus and nitrogen were acquired from unstained sections of plastic‐embedded isolated mouse thymocytes. The variation in elemental composition, residual specimen mass and changes in the specimen morphology were measured as a function of electron dose. Whereas 40% of the total specimen mass was lost at doses above 106 e?/nm2, no significant loss of phosphorus or nitrogen was observed for doses as high as 108 e?/nm2. The oxygen content decreased from 25 ± 2 to 9 ± 2 atomic percent at an electron dose of 104 e?/nm2, which accounted for a major component of the total mass loss. The specimen thickness decreased by 50% after a dose of 108 e?/nm2, and a lateral shrinkage of 9.5 ± 2.0% occurred from 2 × 104 to 108 e?/nm2. At doses above 107 e?/nm2, damage could be observed in the bright field as well in the core edge images, which is attributed to further loss of oxygen and carbon atoms. Despite these artefacts, electron tomograms obtained from high‐pressure frozen and freeze‐substituted sections of C. elegans showed that it is feasible to obtain useful 3D phosphorus and nitrogen maps, and thus to reveal quantitative information about the subcellular distributions of nucleic acids and proteins.  相似文献   

13.
The addition of 10 mM CaCl2 to glutaraldehyde fixative leads to the formation of small electron-dense deposits in the organ of Corti of the guinea-pig. These precipitates are mainly attached to cell membranes in contact with different extracellular lymphatic fluids. A higher number of precipitates is localized in the acellular parts of tectorial and basilar membrane. Electron energy-loss spectroscopy (EELS) was used to determine the elemental composition of the deposits formed. The spectra showed a prominent signal at the Ca2+ L2,3 ionization edge. Oxygen could also be detected in all the precipitates analysed. EELS analysis of mitochondria of the inner and outer hair cells after conventional fixation (glutaraldehyde followed by post-fixation in OsO4) revealed a small but significant calcium signal.  相似文献   

14.
The potential of Nanoplast melamine resin embedding for the study of mammalian lung parenchyma was examined by means of electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS). Samples were either fixed with glutaralde-hyde-paraformaldehyde or glutaraldehyde-tannic acid, or were directly transferred to the embedding medium without prior fixation. Organic dehydrants, as well as fixatives containing heavy metals and stains, were omitted. A very high level of ultrastructural detail of chromatin, ribosomes, mitochondria and plasma membranes was achieved by ESI from the Nanoplast-embedded samples. The most prominent gain in ultrastructural detail was achieved when moving from an energy loss just below the L2,3 edge of phosphorus at 132 eV to an energy loss just beyond this edge. This reflects the prominent P L2,3 edge observed by EELS of Nanoplast-embedded samples in comparison with conventionally processed samples. Thus, taking into account possible sectioning artefacts, excellent heterochromatin images which rely on the phosphorus distribution can be obtained from Nanoplast-embedded samples by computer-assisted analysis of electron spectroscopic images. In this respect glutaraldehyde-paraformaldehyde fixation is preferable to glutaraldehyde-tannic acid fixation because the presence of silicon, revealed by EELS, in tannic-acid-fixed samples may introduce artefacts in phosphorus distribution images obtained by the three-window method because of the close proximity of the L2,3 edges of silicon and phosphorus.  相似文献   

15.
Egerton RF 《Ultramicroscopy》2007,107(8):575-586
We discuss various factors that determine the performance of electron energy-loss spectroscopy (EELS) and energy-filtered (EFTEM) imaging in a transmission electron microscope. Some of these factors are instrumental and have undergone substantial improvement in recent years, including the development of electron monochromators and aberration correctors. Others, such as radiation damage, delocalization of inelastic scattering and beam broadening in the specimen, derive from basic physics and are likely to remain as limitations. To aid the experimentalist, analytical expressions are given for beam broadening, delocalization length, energy broadening due to core-hole and excited-electron lifetimes, and for the momentum resolution in angle-resolved EELS.  相似文献   

16.
The combination of scanning transmission electron microscopy (STEM) and parallel-detection energy-loss spectroscopy (EELS) was used to detect specific bound elements within macromolecules and macromolecular assemblies prepared by direct freezing. After cryotransferring and freeze-drying in situ, samples were re-cooled to liquid nitrogen temperature and low-dose (about 103 e/nm2) digital dark-field images were obtained with single-electron sensitivity using a beam energy of approximately 100 keV and a probe current of approximately 5 pA. These maps provided a means of characterizing the molecular weights of the structures at low dose. The probe current was subsequently increased to about 5 nA in order to perform elemental analysis. The 320 copper atoms in a keyhole limpet haemocyanin molecule (mol.wt = 8 MDa) were detected with a sensitivity of ± 30 atoms in an acquisition time of 200 s. Phosphorus was detected in an approximately 10-nm length of single-stranded RNA contained in a tobacco mosaic virus particle (mol.wt = 130 kDa/nm) with a sensitivity of ± 25 atoms. Near single-atom sensitivity was achieved for the detection of iron in one haemoglobin molecule (mol.wt = 65 kDa, containing four Fe atoms). Such detection limits are only feasible if special processing methods are employed, as is demonstrated by the use of the second-difference acquisition technique and multiple least-squares fitting of reference spectra. Moreover, an extremely high electron dose (about 1010 e/nm2) is required resulting in mass loss that may be attributable to ‘knock-on’ radiation damage.  相似文献   

17.
We show that Image-EELS is suitable for detecting relatively low phosphorus concentrations in very small axoplasmic structures of squid axons. Imaging plates and a CCD camera were used as electron sensors. From image series spanning a certain energy-loss range EELS (electron energy-loss spectra) were derived by averaging read-outs from many axoplasmic particles (APs). The ratio of these spectra to spectra of the background was plotted, showing the contrast modulation as a function of the energy loss. This new approach is called EELC (electron energy-loss-dependent contrast spectroscopy). A distinct phosphorus signal was found in APs of presynaptic terminals of the squid giant synapse, in the peripheral giant axon and, as controls, in ribosomes. Biochemical experiments supported this result. In neurofilament-enriched pellets a phosphorus signal could be directly detected by serial EELS and in electron spectroscopic micrographs. After dephosphorylation of either the pellets or the extruded axoplasm with alkaline phosphatase, phosphorus signals in electron spectroscopic micrographs were absent or much reduced in size and intensity. With Image-EELS inherent limitations of traditional element detection modes in energy filtering transmission electron microscopy can be overcome. Compared with serial EELS, the selective analysis of small areas with irregular shape is possible with greatly improved signal-to-noise ratio. The identification of the element-peak in Image-EEL spectra directly proves the presence of the element within the region of interest. For small peaks, the visualization is facilitated by the contrast presentation (EELC). However, the background subtraction modes used for elemental mapping in electron spectroscopic imaging are subject to uncertainties when elemental ionization edges like the PL2,3 edge are examined. Imaging plates are very sensitive electron sensors with a wide dynamic range. Unlike photographic emulsions, they allow acquisition of image series covering a large energy-loss range without normalization of exposure times, and direct extraction of EEL spectra. Thus, the combination of Image-EELS and imaging plates is proposed as an efficient new tool for analytical electron microscopy.  相似文献   

18.
High temperature self-lubricating composites Ni3Al-BaF2-CaF2-Ag-Cr were fabricated by powder metallurgy technique. In this paper the effect of Cr content on tribological properties at a wide temperature range starting from room temperature to 1000 °C was investigated. It was found that Ni3Al matrix composite with 20 wt% Cr exhibited low friction coefficient of 0.24-0.37 and a wear rate of 0.52-2.32×10−4 mm3 N−1 m−1. Especially at 800 °C it showed the lowest friction coefficient of 0.24 and a favorable wear rate of 0.71×10−4 mm3 N−1 m−1. This implied that 20 wt% Cr was the optimal Cr content and its excellent tribological performance could be attributed to the balance between strength and lubricity.  相似文献   

19.
Composite Ag(Br,I) tabular microcrystals of photographic emulsions were studied by the combination of energy-filtering electron microscopy (EFTEM) and electron energy-loss spectroscopy (EELS) in conjunction with energy-dispersive X-ray (EDX) microanalysis. The contrast tuning under the energy-filtering in the low-loss region was used to observe more clearly edge and random dislocations, {111} stacking faults in the grain shells parallel to {112} edges and bend and edge contours. Electron spectroscopic diffraction patterns revealed numerous extra reflections at commensurate positions in between the Bragg reflections and diffuse honeycomb contours; these were assigned to the number of defects in the shell region parallel to the grain edges and polyhedral clusters of interstitial silver cations, respectively. Inner-shell excitation bands of silver halide were detected and confirmed by EDX analyses, i.e. the Ag N2,3 edge at 62 eV (probably overlapped with the weak I N4,5 edge at 52 eV and the Br M4,5 edge at 70 eV), the I M4,5 edge at about 620 eV, and the Br L2,3 edge at about 1550 eV energy losses. Energy-loss near-edge structure of the Ag M4,5 edge at about 367 eV energy losses and low-loss fine structure arisen as a result of interband transitions and excitons, possibly superimposed with many electron effects, have been revealed. The crystal thickness was determined by a modified EELS log-ratio technique in satisfactory agreement with measurements on grain replicas.  相似文献   

20.
Principal component analysis is routinely applied to analyze data sets in electron energy-loss spectroscopy (EELS). We show how physically meaningful spectra can be obtained from the principal components using a knowledge of the scattering of the probe electron and the geometry of the experiment. This approach is illustrated by application to EELS data for the carbon K edge in graphite obtained using a conventional transmission electron microscope. The effect of scattering of the probe electron is accounted for, yielding spectra which are equivalent to experiments using linearly polarized X-rays. The approach is general and can also be applied to EELS in the context of scanning transmission electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号