首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《功能材料》2021,52(8)
首先通过溶剂热法制备了磁性Fe_3O_4纳米粒子,随后采用SiO_2对其进行包覆形成了Fe_3O_4@SiO_2核壳磁性纳米材料。通过XRD、SEM、TEM、磁性能分析和吸附性能分析等对Fe_3O_4@SiO_2核壳磁性纳米材料进行了表征。结果表明,合成的Fe_3O_4@SiO_2核壳磁性纳米材料具有Fe_3O_4和SiO_2两种晶型结构,SiO_2成功包覆在磁性Fe_3O_4纳米粒子上,SiO_2并没有对各组织的结构和成分产生较大影响;Fe_3O_4@SiO_2核壳磁性纳米材料的粒径在200~400 nm左右,且呈核壳式的结构,内层Fe_3O_4纳米粒子的颜色较深,外层SiO_2的颜色较浅;Fe_3O_4@SiO_2核壳磁性纳米材料在室温下的饱和磁化强度为76.31 A·m~2/kg,剩余磁化强度几乎为0;Fe_3O_4@SiO_2核壳磁性纳米材料对Cu(Ⅱ)的吸附在1 500 min时达到饱和,去除率最高为63%,最大吸附容量可达120 mg/g,其对Cu(Ⅱ)具有较好的吸附效果。  相似文献   

2.
采用纤维素水凝胶包覆Fe_3O_4颗粒,制备得到核壳结构的羧甲基纤维素聚丙烯包覆Fe_3O_4类Fenton纳米催化剂(CMC-co-AA/Fe_3O_4),并应用于降解偶氮染料酸性大红GR。考察了体系pH值、催化剂用量、染料初始浓度等参数对降解效果的影响。SEM和FT-IR分析结果表明水凝胶成功地包覆在Fe_3O_4颗粒表面,且壳层厚度为20~30nm。XRD分析显示,包覆层不影响纳米Fe_3O_4的晶型结构,纳米催化剂在使用过程中仍保持Fe_3O_4磁响应性能,能够有效地分离回收。相比传统的Fe_3O_4纳米催化剂,包覆型CMC-co-AA/Fe_3O_4纳米催化剂水溶液显示出了较好的均一分散性。且当pH3直至中性条件下,此时传统未包覆的Fe_3O_4纳米催化剂对酸性大红GR的降解率为0,而CMC-co-AA/Fe_3O_4纳米催化剂的降解率仍能维持36%,说明了水凝胶壳层结构赋予CMC-co-AA/Fe_3O_4纳米催化剂较宽的pH适用范围。重复试验表明,该纳米催化剂在循环使用四次后,对染料的降解率仍能保持98%左右。  相似文献   

3.
刘家良  李娜 《材料导报》2018,32(Z1):121-123
报道了一种合成具有巯基官能团修饰的Au/Fe_3O_4磁性纳米粒子的新方法。采用共沉淀法制备Fe_3O_4磁性纳米颗粒,并在此基础上用聚(烯丙胺)溶液还原HAuCl4,制得Au/Fe_3O_4磁性核壳纳米颗粒,再用3-巯基-1-丙磺酸钠修饰Au/Fe_3O_4磁性纳米粒子,最后得到具有巯基官能团稳定的Au/Fe_3O_4磁性纳米粒子。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、振动样品磁强计(VSM)分别对产物的微观结构及磁性特征进行表征。  相似文献   

4.
采用溶剂热法制备了Fe_3O_4纳米团簇,利用溶胶凝胶法对其进行SiO_2包覆,然后用羧基硅烷化试剂进行羧基化修饰,使其表面连接NTA,引入不同浓度Ni~(2+),制备了Fe_3O_4@SiO_2@COOH@NTA-Ni磁性纳米功能组装体。并对制备的各中间体进行了形貌、Zeta电位、化学组成、羧基密度、Ni~(2+)含量、磁性能的表征。最后,我们利用该磁性纳米功能组装体检测荧光素标记的His标签蛋白和非His标签蛋白,研究了组装体本身荧光对于检测的影响。结果表明Fe_3O_4纳米团簇和Fe_3O_4@SiO_2具有良好的分散性,羧基化后表面羧基密度可达0.5μmol/mg,各中间体在去离子水中有良好的稳定性,1g磁性纳米功能组装体的Ni~(2+)含量高达8.693×10~(-5)mol,具有较高的饱和磁化强度并保持了超顺磁性;同时,我们通过加入洗脱液,检测上清液,解决了该磁性纳米功能组装体自身荧光对检测的影响,从而拓展了其在药物筛选、酶检测等领域的应用。  相似文献   

5.
以具有憎水、憎油特性的硅油作为磁性液体基液,以硅酸钠作为磁性粒子在基液中的包覆分散剂,六甲基硅氧烷为稳定剂,制备出硅油基磁流体。对其制备条件及其性能做了研究,结果表明,当反应温度为80℃,溶液pH=9,硅酸钠的加入量为3.6mol时,制得的硅油基磁流体的分散稳定性最好,磁性颗粒的平均颗粒为8nm。  相似文献   

6.
采用共沉淀法制备四氧化三铁(Fe_3O_4)磁性纳米球,并采用St9ber溶胶-凝胶法制备四氧化三铁@二氧化硅(Fe_3O_4@SiO_2)纳米复合粒子,Fe_3O_4@SiO_2具有超顺磁性,可在外加磁场作用下实现从水中快速分离。并对Fe_3O_4@SiO_2进行了表征,同时系统研究了不同pH和不同浓度的Fe_3O_4@SiO_2与聚合氯化铝(PAC)、聚丙烯酰胺(PAM)联合使用时对污水中磷酸盐的吸附行为,结果表明Fe_3O_4@SiO_2用量为5mg/L,PAC用量为3mg/L,PAM用量为0.413mg/L,pH=9的条件下,Fe_3O_4@SiO_2对磷的去除率达到86.441%,采用Fe_3O_4@SiO_2与PAC和PAM联合除磷效果较好。  相似文献   

7.
以Fe_3O_4、TEOS、AgNO_3为原料,采用葡萄糖做还原剂,在氯化胆碱(ChCl)水溶液中通过超声处理-化学镀法制备Fe_3O_4@SiO_2-Ag核壳纳米粒子。研究了AgNO_3浓度、ChCl浓度、pH值以及反应温度对银含量的影响。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)对Fe_3O_4@SiO_2-Ag的结构和形貌进行分析表征。将纳米粒子作为催化剂应用于烯丙基胺类化合物的合成反应,结果显示,当银含量为0.4%(wt,质量分数)时,催化效率可96%。  相似文献   

8.
目的采用一步法合成Fe_3O_4@C纳米粒子,分析其核壳结构的形成机理,并研究该纳米材料在磁性防伪油墨方面的应用。方法以FeCl_3·6H_2O为铁源,乙二醇为溶剂,葡萄糖为碳源,尿素为碱源,制备具有核壳结构的Fe_3O_4@C纳米粒子,分别采用X射线衍射、场发射扫描电镜、高分辨透射电镜、红外光谱仪和激光拉曼光谱等对其表面形貌和结构进行表征,并对所制备磁性油墨的粘度、抗摩擦性、细度和磁性进行测定。结果所制备的Fe_3O_4@C纳米材料是以平均粒径18 nm的Fe_3O_4为核,厚度为2 nm的无定形碳为壳层的单分散球形纳米粒子,葡萄糖是核壳结构形成的关键;该材料在室温下具有典型的软磁特性,饱和磁化强度为71.2 A·m~(-2)/kg,矫顽力为10 984.8 A/m,所制磁性油墨的墨层耐磨性参数为81%,印记有磁性,粘度为95 Pa·s,各项性能均符合磁性防伪油墨的要求。  相似文献   

9.
采用化学共沉法制备磁粒子Fe_3O_4,选用表面活性剂油酸进行一次包覆,乳化剂OP(烷基酚聚氧乙烯醚)进行二次包覆制备出稳定的水基磁性液体。利用XRD和TEM分析了样品的结构、形貌及粒径;运用VSM技术研究了样品磁性能;重点考察了油酸和OP用量对水基磁性液体稳定性的影响。结果表明,所制备的Fe_3O_4粒子为球形,颗粒的粒径较均匀细小,在10nm左右;磁性液体显示超顺磁性,饱和磁化强度M_s=54.636A·m~2/kg;油酸和OP用量对磁性液体的稳定性有重要影响,当n(Fe_O_4):n(油酸):n(OP)=5:2:4时,磁性液体的稳定性能最好。  相似文献   

10.
磁流变液(MRF)作为最有发展前景的智能材料之一,引起了国内外学者和工业界的广泛关注,研究的热点之一主要是解决MRF的沉降稳定性差和抗氧化腐蚀性差等关键问题。提出了两种新型的轻质软磁性复合微粒的制备方法,即Fe_3O_4/碳纳米管(CNTs)软磁性一维纳米复合微粒和Fe_3O_4/聚苯乙烯(PS)中空磁性复合微粒;配制了一种基于CNTs和聚乙烯基吡咯烷酮(PVP)的磁流变悬浮体系;对用于传统磁流变液的铁粉颗粒进行表面改性,用正硅酸乙酯(TEOS)水解-缩聚反应的方法和化学气相沉积聚合(CVDP)的方法分别在铁粉表面包覆了SiO_2纳米薄膜和聚对亚苯基二亚甲基(PPX)薄膜,制备了SiO_2/Fe复合颗粒和PPX/Fe复合颗粒。  相似文献   

11.
将纳米Fe_3O_4磁性颗粒加入到N,N-二甲基甲酰胺(DMF)和氯仿溶解聚己内酯(PCL)的聚合物溶液中,通过静电纺丝制备PCL/Fe_3O_4磁性复合纳米纤维。利用扫描电子显微镜、X射线衍射仪、红外光谱仪、差示扫描量热分析及磁性演示对复合纤维的形貌尺寸、化学结构、热稳定性和磁性进行了表征。结果表明:所制得的磁性纳米纤维成型良好,且Fe_3O_4磁性颗粒分散在纳米纤维中,其与PCL是物理复合,复合纳米纤维具有一定的磁性,为PCL磁性复合纳米纤维的实际应用做了有益的探索研究。  相似文献   

12.
为研究一种应用于磁稳定流化床反应器的新型高分子磁性微球的制备方法及性能,采用悬浮聚合法制备了Fe_3O_4纳米粒子包覆聚苯乙烯磁性微球,研究了搅拌速率、加入磁性Fe_3O_4纳米粒子的时间等因素对复合微球粒径及性能的影响,运用扫描电子显微镜(SEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重(TGA)等测试手段,表征了磁性聚苯乙烯微球的形貌特征、结构、粒径、磁学性能及Fe_3O_4的包覆量.实验结果表明:在搅拌转速为600 r/min,80℃保温10 min加入修饰Fe_3O_4纳米粒子,制备所得的磁性聚苯乙烯微球为粒径分布均匀的球状微粒;Fe_3O_4的包覆量达到5%,最高饱和磁化强度为3.73 emu/g,具有较好的超顺磁性,可应用于磁稳定流化床反应器.  相似文献   

13.
制备了Fe_3O_4包覆碳纳米管(Fe_3O_4-CNT)水基磁性纳米流体,采用透射电子显微镜(TEM)表征其分散性,静置观察其稳定性,并对磁场中Fe_3O_4-CNT磁性纳米流体的热导率进行了研究。结果表明,Fe_3O_4-CNT磁性纳米流体能在较高磁场强度的磁场中稳定存在;随着磁场强度的增加,Fe_3O_4-CNT纳米颗粒成链和CNT定向对Fe_3O_4-CNT磁性纳米流体热导率增加先后起主导作用;由于碳纳米管的各向异性,在一定磁场方向下,Fe_3O_4-CNT形成的导热网链使磁性纳米流体热导率显著增加;Fe_3O_4包覆在碳纳米管上由于碳纳米管具有较大的长径比,能够有效的降低Fe_3O_4-CNT在磁场中链的长度以及成链速度,进一步提高了基液的热导率。  相似文献   

14.
采用乳液聚合法在Fe_3O_4@SiO_2纳米粒子表面引发苯乙烯单体聚合,制备了聚苯乙烯修饰的Fe_3O_4@SiO_2磁性复合微球(Fe_3O_4@SiO_2@PS),研究了其对甲基橙(MO)和亚甲基蓝(MB)的吸附性能。用透射电镜和扫描电镜对所制得样品进行了形貌表征。结果表明,复合材料中的Fe_3O_4粒径分布在150~220 nm范围内,粒径分布较均匀、分散性良好;用振动样品磁强计对样品的磁性能进行表征,Fe_3O_4@SiO_2@PS复合粒子具有超顺磁性和较好的磁响应性;采用X射线衍射仪、傅里叶变换红外光谱仪、热重分析仪分析了复合粒子的结构和组成,用紫外-可见分光光度计测定有机染料分子的浓度,从而计算吸附量。Fe_3O_4@SiO_2@PS复合粒子对甲基橙和亚甲基蓝具有良好的吸附性能,在2 h达到吸附平衡,MO和MB单位平衡吸附量分别为94.5 mg/g、167.8 mg/g;该磁性吸附剂吸附染料分子后,可以用乙醇进行解吸附,在保持原始最大吸附量的81%下,可重复使用4次。  相似文献   

15.
采用溶剂热法制备表面修饰柠檬酸的磁性Fe_3O_4纳米粒子和磁性Fe_3O_4纳米粒子,并对其粒径大小、晶体结构和磁性能进行表征,并考察其用于DNA提取分离的效果。结果表明,两产物均为立方晶系的Fe_3O_4纳米颗粒。磁性Fe_3O_4纳米粒子和表面修饰柠檬酸的磁性Fe_3O_4纳米粒子的平均粒径为411.1nm和586.3nm。当全血体积200μL、磁性纳米粒子用量2.0mg时,提取的DNA浓度最高分别为270.6ng/μL(Fe_3O_4)和466.4ng/μL(Fe_3O_4@柠檬酸)。  相似文献   

16.
为解决天然壳聚糖(CTS)作为CO_2开关型乳化剂时响应破乳不完全的问题,对CTS进行磁性Fe_3O_4纳米粒子的接枝改性;采用红外光谱和扫描电子显微镜对接枝改性产物进行表征,并测试其CO_2响应性、乳化性能及破乳效果。结果表明:磁性Fe_3O_4纳米粒子成功接入CTS,并在水中形成CTS包覆磁性Fe3O4纳米粒子的聚集体颗粒;Fe_3O_4纳米粒子的接入并不会影响壳聚糖的CO_2响应性和乳化性能;磁化改性CTS制备的乳液在CO_2作用下,不能完全破乳的情况可在磁性协同作用下发生改善,达到完全的破乳分层。  相似文献   

17.
以聚乙二醇(PEG)为溶剂,用多元醇法制备了Tb~(3+)掺杂的纳米Gd_2O_3并在其表面包覆聚硅氧烷壳层,得到了Gd_2O_3∶Tb~(3+)/SiO_x纳米颗粒,研究了不同分子量(200、400、600)PEG对纳米颗粒尺寸及发光的影响。扫描电镜图像表明样品均为分散的球形,其中PEG200制备出的纳米颗粒具有明显核壳结构。马尔文激光粒度仪测试结果表明随着PEG分子量的增大,包覆前的颗粒粒径分别为78、21和28nm,包覆后的颗粒粒径分别为140、32和38nm;发射光谱表明:与PEG400和PEG600相比,PEG200合成出的纳米颗粒的荧光性能最佳。  相似文献   

18.
利用辛酸亚锡作为催化剂,在经过乙醇酸修饰的Fe_3O_4纳米粒子表面直接通过开环聚合丙交酯得到核-壳结构的磁性聚乳酸复合微球,聚乳酸与磁性粒子表面之间的作用力为化学键。从产物的TEM可以观察到聚乳酸包覆在磁性纳米粒子的表面;通过对羟基乙酸修饰的Fe_3O_4纳米粒子的红外光谱和所制备的复合微球的红外光谱的比较进一步证明了磁性粒子表面聚乳酸的生成;聚乳酸的含量通过产物的TG-DTA计算约为8%。所得到的磁性聚乳酸复合微球能够很好的分散在氯仿等对聚乳酸的良性溶剂中,并且通过磁性测试显示其具有超顺磁性,在生物医药领域具有潜在的应用价值。  相似文献   

19.
通过N-异丙基丙烯酰胺与丙烯酸钠共聚包覆四氧化三铁颗粒制备了温敏磁性吸水树脂。首先采用共沉淀法制备了磁性Fe_3O_4纳米粒子,接着将Fe_3O_4纳米粒子、N-异丙基丙烯酰胺和丙烯酸钠通过水溶液自由基共聚法制备成温敏磁性吸水树脂。利用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和热重分析(TG)对所得样品进行了表征测试。通过温度敏感性、溶胀性能和退胀性能的研究发现,温敏磁性吸水树脂的临界溶解温度(LCST)为50℃左右,溶胀吸水倍率为116.74g/g,70℃下30 min能退去质量分数约为77.90%的水分,表现出了良好的吸水性和温敏性。充分溶胀的温敏磁性吸水树脂经过超声30min后Fe_3O_4含量小幅降低,表明其磁性相对稳定。  相似文献   

20.
通过化学共沉淀法制备Fe_3O_4磁性纳米颗粒,在其表面包覆碳层,形成Fe_3O_4@C磁性微球,采用层层自组装法将聚二烯丙基二甲基氯化铵(PDDA)修饰到微球表面。将该微球与表面富含羧基的碳量子点(CQDS)连接,得到碳包覆的Fe_3O_4@CQDS(Fe_3O_4@C@CQDS)磁性荧光双功能复合微球。通过X射线衍射(XRD)、振动样品磁强计(VSM)、扫描电子显微镜(SEM)、荧光分光光度计和荧光显微镜等表征手段对该复合微球进行结构表征以及性能测试。结果表明:复合微球粒径约为50nm,饱和磁强度为23.39emu/g,这种性能优异的磁性荧光双功能复合微球有望在生命科学领域得到广泛应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号