首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Cr、Fe、Ni、Al、Si纯粉末中添加非等摩尔比的Cu元素混合后压制成坯,采用激光自蔓延烧结制备CrFeNiAlSiCux(x=0-1.2)高熵合金。通过OM、XRD、SEM和EDS、维氏显微硬度计、磨粒磨损机及电化学工作站进行表征,分析物相结构、显微组织、密度和孔隙率、硬度、耐磨及耐蚀性能。结果表明:合金中BCC和FCC两相共存,随着Cu元素添加,FCC相增多,但BCC相仍多于FCC相,合金是典型树枝晶组织并伴有许多菊花状的组织,菊花状组织主要含有Cr、Fe、Si、Ni元素,枝晶间组织主要含有Cu元素。CrFeNiAlSiCu0.4综合性能最佳,显微硬度最大,为908.68 HV,单位面积磨损量最小,为48 mg·cm-2,腐蚀电流最小,为0.4100 μA/cm-2,腐蚀电位最大,为-149.264 mV。  相似文献   

2.
目的 利用氩弧熔覆技术在45钢表面制备出AlCrFeCoCuNi高熵合金涂层,改善其耐磨性能。方法 采用机械球磨方式将Al、Cr、Fe、Co、Cu、Ni粉均匀混合,预涂敷在45钢表面,利用氩弧熔覆技术制备出不同Al物质的量之比的高熵合金涂层。采用X射线衍射仪、扫描电子显微镜及能谱分析仪分析涂层的物相及显微组织,利用显微硬度仪测试涂层表面及截面的显微硬度。采用摩擦磨损试验机测试涂层的摩擦系数及磨损率,分析涂层的耐磨性能。结果 AlxCrFeCoCuNi高熵合金涂层物相主要包括面心立方(FCC)相和体心立方(BCC)相,当Al物质的量之比小于0.5时,涂层由FCC相构成;当Al物质的量之比为1.0~2.0时,涂层由BCC+FCC相构成;当Al物质的量之比达到2.5时,涂层仅存在BCC相。AlxCrFeCoCuNi高熵合金涂层组织由等轴晶、柱状晶及白色的晶界构成,且较为致密。Al物质的量之比的增加使得涂层的显微硬度提升,当Al物质的量之比为2.5时,涂层最高硬度为710 HV0.5。在相同磨损条件下,AlxCrFeCoCuNi...  相似文献   

3.
目的通过等离子合金化高熵合金涂层,提高铸铁表面耐磨性。方法采用等离子合金化法,以等摩尔比的Al,Co,Cr,Cu,Mn,Ni单质金属粉在HT250铸铁表面制备高熵合金复合涂层。通过SEM,EDS,XRD等分析涂层的组织,测试涂层的显微硬度分布。结果由于铸铁基体少量熔化,基体中的Fe和C元素进入涂层,形成了厚度约为0.2 mm的Al Co Cr Cu FexMn Ni Cx高熵合金涂层。从涂层表面到基材,体系的混合熵呈高熵-中熵-低熵的梯度变化。涂层主要由高熵合金的枝晶和枝晶间渗碳体、σ相等组织构成,主要有FCC,BCC,Fe3C及σ相。涂层的显微硬度大约为350~600HV0.2,明显高于铸铁基体的硬度(200~230HV0.2)。结论通过等离子合金化可以在铸铁表面形成高熵合金+碳化物的复合涂层,提高了铸铁的显微硬度,有利于铸铁表面耐磨性的提高。  相似文献   

4.
利用等离子熔覆技术在Q235钢板上制备Al Co Cr Cu Fe Ni Mn V0.2Cx(x=0,0.02,0.05,0.1,0.2,摩尔比)高熵合金熔覆层,采用XRF、OM、SEM、XRD、显微硬度计等分析了熔覆层的合金成分、微观组织、物相结构以及显微硬度。结果表明,熔覆层基体组织均为典型的树枝晶结构,由FCC+BCC固溶体组成,枝晶为BCC相,枝晶间为FCC相。当x为0.05~0.2时,熔覆层组织中有大量VC相在枝晶内析出,其形态多呈十字状和多边形颗粒状。由于碳的固溶强化作用和VC的析出相强化作用,随着碳含量的增加,熔覆层显微硬度呈增大的趋势,当x=0.2时,显微硬度达到572.4 HV。  相似文献   

5.
冯力  马凯  杨伟杰  王宁  袁昱东  李文生 《表面技术》2022,51(10):344-352
目的 为了提升普通金属材料的表面耐腐蚀和耐磨性能,提出了一种在普通金属材料表面制备性能良好的CuNiCoFeCrAl2.3高熵合金涂层的技术工艺。方法 利用冷喷涂技术在45#钢基体上制备混合金属涂层,再经过感应重熔技术将混合金属涂层原位合成为CuNiCoFeCrAl2.3高熵合金涂层。通过采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)、显微硬度计、磨料磨损试验机等,对涂层的相组成、显微组织、硬度、耐磨性进行分析。结果 原位合成CuNiCoFeCrAl2.3高熵合金涂层组织致密,元素均匀分布,合金涂层由简单的BCC相构成,涂层的微观组织呈现出典型的枝晶结构。内枝晶区主要富含Co、Cr、Fe和Ni,枝晶间区则富含Cu和Al。CuNiCoFeCrAl2.3高熵合金涂层的显微硬度是45#钢基体的3倍,在干摩擦条件下,CuNiCoFeCrAl2.3高熵合金涂层在摩擦过程中以磨粒磨损为主,涂层在干滑动条件下的磨损率比45#钢基体的磨损率低59%,摩擦因数为0.38,约为45#钢基体的56%,CuNiCoFeCrAl2.3高熵合金涂层的磨损率为2.95×10?5 mm3/(N·m)。结论 使用冷喷涂辅助原位合成CuNiCoFeCrAl2.3高熵合金涂层具有很高的硬度和良好的耐磨性能。  相似文献   

6.
利用激光熔覆技术在45钢基体表面制备AlxCoCrCuFeNi(x=0.5,0.75,1.0,1.25,1.5)高熵合金涂层,研究了 Al元素含量对涂层组织结构、相组成、硬度及耐磨性的影响规律,重点分析了非平衡凝固快冷条件对高熵合金涂层形核的影响机制.AlxCoCrCuFeNi涂层具有BCC和FCC结构,随Al元素含量的增加FCC逐渐向BCC转变,高熔点Fe,Cr元素偏聚于BCC相中,Cu元素以富Cu相形式存在.涂层硬度随Al含量的增加而增大,合金体系为Al1.5CoCrCuFeNi时硬度达到最大为807.3HV0.2,耐磨性与硬度呈正相关性.激光熔覆非平衡快冷条件抑制了金属间化合物等有序相的形核、生长,有利于高熵合金固溶体相的形成.  相似文献   

7.
采用光学显微镜、X射线衍射仪及硬度计分析了Al_xCoCrFeNi系(x=0. 25、0. 55、0. 75及1. 25)高熵合金在不同温度(800、1 000及1 200℃)退火后的组织及硬度演变规律。结果表明:随着Al元素含量的增加,Al_xCoCrFeNi高熵合金的显微组织由FCC单相逐渐转变为FCC+BCC双相和BCC单相,其硬度也逐渐升高; Al_(0. 25)CoCrFeNi合金的组织热稳定性较好; 800和1 000℃退火对Al_(0. 55)CoCrFeNi和Al_(0. 75)CoCrFeNi合金的组织影响较小,硬度也未发生明显变化; 1 200℃退火后,合金组织粗化,硬度下降;退火温度对BCC结构的Al_(1. 25)CoCrFeNi高熵合金的组织和性能有重要影响,800℃退火时有σ相生成; 1 000℃退火,σ相含量减少,1 200℃退火,σ相再次形成,因此对应的合金硬度先升高后降低再升高。  相似文献   

8.
利用冷喷涂辅助原位合成高熵合金涂层的方法,在45#钢基体表面成功制备出不同Co含量的FeCoxCrAlCu(x=0,0.5,1,1.5,2)高熵合金涂层。通过XRD、SEM、EDS、TEM、显微硬度计、磨料磨损试验机、电化学工作站等设备,检测分析了Co含量的变化对合金涂层相结构、显微组织,硬度、耐磨性及耐腐蚀性的影响。结果表明:合金涂层是由简单的FCC+BCC双相混合结构组成,Co含量的改变对涂层相组织的数量影响不大;随着Co含量的增加,合金涂层中显微组织的枝晶数目增加,并且得到明显粗化,通过面扫得显微组织中枝晶内富集Fe,Cr,Co元素,枝晶间富集Cu元素,Al均匀的分布在整个涂层中;随着Co含量的增加,硬度先增加后减小,在Co=1时合金涂层硬度达到最大为555.6HV;合金涂层中最小的摩擦系数为0.361;在3.5wt.%NaCl腐蚀介质中,合金涂层相比与45#钢基体具有较正的自腐蚀电位(Ecorr=-0.325V),说明涂层耐腐蚀性比基体好。  相似文献   

9.
目的用铬铁原矿粉快速直接制备高熵合金复合涂层,研究其组织结构及性能,提高基体表面硬度和耐磨性。方法采用激光熔覆技术在40Cr钢表面制备高熵合金复合涂层,运用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及硬度计、磨粒磨损机,分析高熵合金复合涂层不同深度的显微组织、物相结构及力学性能。结果高熵合金复合涂层与基体结合良好,物相结构为简单BCC结构的过饱和固溶体,显微组织为典型胞状和树枝晶组织,且原位自生形成的细小碳化物颗粒强化相弥散分布于基体。深度为0.1 mm时,复合涂层的显微组织形貌最细小,且存在一定程度的成分偏析。复合涂层显微硬度平均为6.48 GPa,为基材40Cr钢的2倍以上。高熵合金复合涂层不同深度的磨损率均低于基体的磨损率,且随着深度的增加,磨损率逐渐升高,当深度为0.1 mm时,磨损率最低,为0.17 mg/mm2,耐磨性最好。结论以铬铁原矿粉为掺杂组元,采用激光熔覆技术成功制备出掺杂原位自生颗粒强化相的高熵合金复合涂层,显著提高了基体表面硬度和耐磨性。  相似文献   

10.
采用冷喷涂辅助感应重熔和冷喷涂辅助激光重熔2种方法分别在45#钢表面制备FeCrMnAlCu高熵合金涂层。对高熵合金涂层的相组成、显微组织、硬度、耐磨性能进行表征与检测,研究2种工艺对涂层耐磨性能的影响。结果表明:2种工艺合成的FeCrMnAlCu高熵合金涂层均由体心立方(bcc)和面心立方(fcc)相组成,涂层组织致密,元素分布均匀。涂层微观组织均为树枝晶+枝晶间组织,枝晶区主要由Mn、Cr和Fe元素构成,枝晶间主要为Cu,Al元素均匀地分布在枝晶和枝晶间。冷喷涂辅助感应重熔合成的FeCrMnAlCu高熵合金涂层中bcc晶格应变大于激光重熔合成的高熵合金涂层的晶格应变。冷喷涂辅助感应重熔合成FeCrMnAlCu高熵合金涂层的显微硬度是冷喷涂辅助激光重熔合成涂层硬度的1.2倍,是45#钢基体硬度的3.5倍。FeCrMnAlCu高熵合金涂层在摩擦过程中主要以磨粒磨损为主,采用冷喷涂辅助感应重熔合成的FeCrMnAlCu高熵合金涂层具有良好的耐磨性能,其磨损率比冷喷涂辅助激光重熔合成涂层的磨损率降低29%。  相似文献   

11.
采用真空电弧熔炼炉制备FeCrMnAlCux(x=0, 0.5, 1.0, 1.5, 2.0)高熵合金,采用XRD、SEM、TEM、显微硬度仪、电子万能试验机和摩擦磨损实验机检测分析了Cu含量的变化对合金相结构、显微组织、压缩性能、硬度、耐磨性的影响。结果表明:FeCrMnAlCux高熵合金为典型的树枝晶组织,由BCC结构的枝晶组织、FCC结构的枝晶间组织及枝晶内析出的具有BCC结构的纳米级析出物构成。随着Cu含量的增加,合金微观组织中的枝晶组织含量减小,枝晶间组织含量增大;BCC结构的枝晶组织中弥散析出的第二相颗粒对合金的强度和硬度有着重要的影响,抗压强度和屈服强度在x=1.0时达到最大(分别为1230.2 MPa和960.5 MPa),合金的压缩变形率在x=2.0时达到最大值20.68%;随着Cu含量的增加,合金的硬度先增加后减少,合金硬度在x=0.5时达到最大值421.4HV,此时合金的摩擦性能最好,其磨损率为2.25×10-5 mm3/(N·mm)。  相似文献   

12.
采用水冷铜坩埚真空感应悬浮熔炼制备了多组元高熵合金Al0.5Co Cr Cu Fe Ni,研究了不同热处理工艺对合金的显微组织和硬度的影响规律。结果表明,Al0.5Co Cr Cu Fe Ni高熵合金相结构简单,在铸态下由两种不同成分的FCC相组成,枝晶处为贫Cu的FCC1相,枝晶间为富Cu的FCC2相,显微组织为树枝晶形貌,存在一定的枝晶偏析。合金制备态的硬度为255 HV0.5。合金具有良好的热稳定性,随着热处理温度的升高,合金的相结构和硬度均无太大的变化。冷却方式对合金的显微组织和相结构影响不大,但炉冷后合金的硬度比空冷和水冷时高。  相似文献   

13.
采用电弧熔炼法制备FeCrMnNiAl0.1高熵合金,采用SEM、XRD、显微硬度计和万能拉伸试验机,研究退火处理升温速率和保温时间对该五元合金微观组织及力学性能的影响。结果表明,FeCrMnNiAl0.1高熵合金由FCC相、BCC相和四方结构的Cr3Ni2组成。退火保温时间延长导致合金晶格畸变程度增加,BCC组织增加;提高升温速率,BCC组织同样增加,但晶格畸变程度减小。未热处理合金硬度在190 HV左右,高熵合金的显微硬度随退火保温时间的延长而增加,但升温速率提高会使显微硬度逐渐下降。退火时保温时间延长,会使高熵合金的抗拉强度逐渐增大,而延展性逐渐变差;随升温速率增加,合金抗拉强度先减小后增大,延展性变好。  相似文献   

14.
钛合金表面激光熔覆AlBxCoCrNiTi高熵合金涂层的组织与性能   总被引:2,自引:2,他引:0  
目的研究AlB_xCoCrNiTi(x=0、0.5、1)高熵合金涂层的组织及性能,提高钛合金表面硬度及耐磨性。方法采用激光熔覆技术在TC4钛合金表面制备出AlB_xCoCrNiTi高熵合金涂层,运用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)等材料分析手段,研究了B含量对高熵合金涂层形貌、组织结构、成分的影响,并采用维氏硬度计以及摩擦磨损试验检测了熔覆涂层的硬度和耐磨性能。结果高熵合金涂层与基体的整体结合形貌良好。未添加B的高熵合金涂层主要由BCC相和晶体结构类似(Co,Ni)Ti_2相组成。随着B的加入,高熵合金涂层的晶粒得到细化,BCC相含量增加,(Co,Ni)Ti_2相含量有所减少,且熔覆层原位生成了TiB_2硬质相,TiB_2硬质相含量随B含量的增加而增加。熔覆涂层的硬度和耐磨性与B含量呈正相关关系,AlB_1CoCrNiTi高熵合金涂层的平均显微硬度最大,为814HV,且AlB_1CoCrNiTi高熵合金涂层的磨损量最小,其耐磨性约为未添加B的高熵合金涂层的7倍。结论 B含量的增加,有助于改善AlB_xCoCrNiTi高熵合金涂层的摩擦学性能,AlB_xCoCrNiTi高熵合金涂层有效提高了钛合金表面的硬度及耐磨性能。  相似文献   

15.
贾彦军  陈瀚宁  张家奇  雷剑波 《表面技术》2022,51(12):350-357, 370
目的 解决Q235钢材料在实际应用中由于磨损、腐蚀导致使用寿命缩短问题,提升Q235钢表面的硬度、耐磨性和耐蚀性。方法 利用激光熔化沉积技术在Q235钢表面制备无裂纹CoCrNiNbW高熵合金涂层。采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其微观组织结构、元素分布和物相成分;采用显微硬度计、试块-试环摩擦磨损试验机分别测试高熵合金涂层和Q235钢的显微硬度和耐磨性能,研究涂层的强化机制和磨损机理;采用电化学工作站测试分析高熵合金涂层和Q235钢的电化学腐蚀行为,研究涂层的耐蚀性和腐蚀机制。结果 CoCrNiNbW高熵合金涂层的微观组织主要由等轴晶组成,涂层中部和底部存在未熔化Nb和W颗粒,起强化相作用;主要物相由富含Co、Ni的FCC相及富含Nb的BCC相组成;高熵合金涂层的平均显微硬度为800HV0.2,约为基材的4倍;涂层的磨损机制以磨粒磨损为主,磨损率为2.315´ 10–5 g.m–1,约为基材的1/5;在质量分数3.5%的NaCl溶液中,高熵合金涂层具有更好的耐腐蚀性,腐蚀电阻约为基材的8倍。结论 高熵合金涂层的显微硬度、耐磨性和耐腐蚀性较Q235钢基材有很大提升。  相似文献   

16.
利用电弧熔炼技术制备得到AlCoCuFeNi_(0.2)高熵合金,研究了铸态与900℃退火态高熵合金的组织、力学性能、磁学性能之间的差异。研究发现,铸态及900℃退火态合金都是BCC+FCC+有序BCC共存结构,BCC相是主相,组织都是典型的树枝晶组织,都具有优良软磁性能。900℃退火后,BCC相向FCC相转变,合金塑性显著改善,强度和硬度有所下降,饱和磁化强度得到提高。  相似文献   

17.
采用真空熔炼法制备出了AlCoCrFeMnZr近共晶高熵合金,通过XRD、SEM、显微硬度计和摩擦磨损试验机测试了AlCoCrFeMnZr合金的晶体结构、组织形貌、硬度以及耐磨性能。结果表明,AlCoCrFeMnZr合金的物相结构为BCC和HCP双相结构,组织由初生相和细密的片状共晶组织组成。初生相由富Cr、Fe、Zr的HCP相组成,以树枝晶方式生长,片状共晶组织中枝晶区域(α相)主要分布Co、Cr、Fe,晶间(β相)主要分布Al和Zr,符合高熵合金组织及元素分布规律。磨损方式由粘着磨损和磨粒磨损转变为氧化磨损,摩擦因数出现先增加后减少的趋势,平均摩擦因数为0.5432,显微硬度为768.8 HV0.5,具有优良的硬度和耐磨性。  相似文献   

18.
在Q235钢基体上采用等离子弧熔覆法制备了CoCrCuFeMnNi高熵合金涂层。采用SEM、EDS、XRD等研究了涂层的组织,利用显微硬度计测试了涂层的显微硬度分布。结果表明:采用等离子熔覆等摩尔Co、Cr、Cu、Fe、Mn、Ni单质金属混合粉,形成了无裂纹、无孔等与基体冶金结合的高熵合金涂层。涂层厚度约为1mm,主要由FCC1固溶体枝晶和少量枝晶间组织组成,枝晶间为BCC、FCC2相。涂层的显微硬度大约为260~390 HV0.2,明显高于基体的硬度150~180 HV0.2。  相似文献   

19.
采用Nd:YAG激光辐照法在Cu单元素基合金表面制备FeCoCrAlCu高熵合金化涂层。利用扫描电镜、能谱仪、X射线衍射仪、显微硬度计及纳米压痕仪等研究FeCoCrAlCu激光高熵合金化层形成机制及性能。结果表明:采用优化的激光辐照工艺参数对等摩尔比的Fe、Co、Cr、Al四元合金粉末进行激光辐照合金化,可制备出含有基体主元Cu的FeCoCrAlCu高熵合金化涂层。合金化涂层由FCC+BCC简单结构固溶体组成,其显微组织主要以颗粒状组织为主,且与基体呈良好的冶金结合。Fe CoCrAlCu激光高熵合金化层的硬度是基体材料的7倍以上,其弹性模量、弹性比和同样深度承受的最大载荷远高于基体材料的,具有良好的强度和韧性。  相似文献   

20.
采用真空电弧熔炼法制备了Al_(0.8)CrFe_2Ni_x高熵合金(x为Ni与Cr的摩尔比),采用金相观察、X射线衍射、显微硬度检测和压缩试验等手段研究了Ni含量对其组织及力学性能的影响。结果表明,当x=0.50时,合金为B_2+BCC晶体结构,组织为树枝晶+胞状晶;当x=1.25时,合金晶体结构转变为单一的BCC结构,而组织变为单一的树枝晶;当x=2.00时,合金转变为FCC+BCC的混合结构,其组织转变为细小密集的片层状共晶组织;随着Ni含量继续增加,当x=2.75时,合金保持着FCC+BCC结构,而FCC相比例明显增加,并形成了完整连贯的树枝晶组织;Al_(0.8)CrFe_2Ni_x高熵合金的硬度随x的增加而降低,同时屈服强度减小、韧性增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号