首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-entropy alloys (HEAs) have significant application prospects as promising candidate materials for nuclear industry due to their excellent mechanical properties, corrosion resistance and irradiation resistance. In this work, the Mo0.25V0.25Ti1.5Zr0.5Nbx(x=0, 0.25, 0.5, 0.75 and 1.0) HEAs were designed and fabricated. The alloys were prepared by vacuum arc melting, and all the ingots were annealed at 1200°C for 24 h. The microstructures, ...  相似文献   

2.
AlCoCrFeNi is one of the most widely studied alloy systems in the high-entropy alloy(HEA) area due to the interesting microstructure and mechanical properties.In this study,the AlCoCrFeNi alloy was prepared using spark plasma sintering(SPS) with pre-alloy powders obtained through gas atomization.Then,the sintered samples were annealed at 700,800 and900℃,and the effect of annealing temperature on the microstructure,mechanical and corrosion properties was studied.The results show that phase formation takes place during annealing process with the new phase(σ) and some nano scale BCC precipitates formation.The size and quantity of the nanoscale precipitates increase with increasing annealing temperature.The twin is also observed after annealing at 900℃.The annealing temperature has an obvious effect on the mechanical properties and corrosion resistance of the spark plasma sintered AlCoCrFeNi HEA.When the annealing temperature is 700℃,the hardness,yield strength and fracture strength reach the maximum with the value of 545 HV,1430 MPa and 2230 MPa,respectively.The compressive ratio reaches the maximum of 17.2%,with the annealing temperature increasing to 800℃.The corrosion resistance of the samples decreases with increasing the annealing temperature.  相似文献   

3.
CrFeNi2V0.5Wx (x = 0, 0.25) alloys based on these parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valance electron concentration, and electronegativity difference(Δχ) were designed and prepared. The microstructure and room-temperature mechanical behavior of both alloys were investigated. Compressive test results showed that the CrFeNi2V0.5W0.25 alloy had higher yield strength than that of the W-free CrFeNi2V0.5 alloy, although they all exhibited quite larger compressive plasticity (ε > 70%). Compression fracture surface of CrFeNi2V0.5W0.25 alloy revealed a ductile fracture in the face-centered cubic (FCC) phase and a brittle-like fracture in the σ phase. Moreover, tensile test results indicated that the CrFeNi2V0.5W0.25 alloy exhibited excellent mechanical property with an ultimate tensile strength of 640 MPa and a high tensile elongation of 15.7%. The tensile deformation mode of the FCC phase in the CrFeNi2V0.5W0.25 alloy is dominated by planar glide, relating to dislocation configurations, high-density dislocations, and dislocation wall. Therefore, dislocation slip plays a significant role in tensile deformation of CrFeNi2V0.5W0.25 high-entropy alloy. The higher strength of CrFeNi2V0.5W0.25 alloy is predominantly due to the solid solution strengthening of W element and σ phase precipitation strengthening. Combination of the higher tensile strength and plasticity suggests that the CrFeNi2V0.5W0.25 alloy can be a promising aerospace material.  相似文献   

4.
The present work reports a systematic investigation on phase evolution,microstructure and microstructure-property relationship of two typical face-centered cubic(FCC) structured high-entropy alloys(HEAs),FeNiCoCr and FeNiCoCrMn,prepared via mechanical alloying(MA) followed by spark plasma sintering(SPS).Following 50 h of MA,the two HEAs consisted of a mixture of FCC and body-centered cubic phases.Following SPS,the bulk FeNiCoCr alloy showed a primary FCC phase with a small amount of Cr_(23)C_6 and Cr_2 O_3 contaminants,while the bulk FeNiCoCrMn alloy was composed of a primary FCC phase with some(Cr,Mn)_(23)C_6 and MnCr_2 O_4 contaminants.The average grain size of the primary FCC phase in the bulk FeNiCoCr alloy was ~416 nm,while that of the primary FCC phase in the bulk FeNiCoCrMn alloy was ~547 nm.The yield strength,compressive strength and strain-to-failure of the bulk FeNiCoCr alloy are 1525 MPa,1987 MPa and 24.4%,respectively,whereas those of the bulk FeNiCoCrMn alloy are 1329 MPa,1761 MPa and 21.9%,respectively.It suggests that the bulk FeNiCoCrMn exhibited lower strength and plasticity in comparison with the bulk FeNiCoCr alloy.Clearly,the smaller grain size of the primary FCC phase in the FeNiCoCr alloy is mainly responsible for the better mechanical performance.  相似文献   

5.
The CoCrCuFeNiNb high-entropy alloys coatings were prepared by using plasma-transferred arc cladding process. The microstructure and electrochemical behaviors of the coating were investigated in detail. The experimental results indicated that the coating consists of a simple fcc solid solution phase and an order(Co Cr)Nb-type Laves phase. The polarization curves, obtained in 1 and 6 mol/L hydrochloric acid solutions, clearly indicated that the general corrosion resistance of the coating at ambient temperature was better than that of 304 stainless steel. The coating displayed a lower corrosion current and lower corrosion rate. Electrochemical impedance spectroscopy demonstrated that the impedance of the coating was significantly higher than that of the 304 stainless steel.  相似文献   

6.
本文采用真空电磁感应熔炼炉制备了Al-Si-Mg-Cr合金,利用Thermo-calc软件进行热力学模拟,使用SEM、EDS等测试方法,表征了不同热处理状态下Al-Si-Mg-Cr合金微观组织,并测试其力学性能。采用了失重法和电化学法测试其腐蚀性能。结果表明:实验合金主要物相包括初晶α-Al、(α-Al+Si)共晶、Al13Cr4Si4、β-Al(Cr, Fe)Si、富Fe相(β-Al5FeSi和π-AlSiMgFe)。热处理后的实验合金组织均得到细化,共晶组织区域变窄,共晶Si球化,合金中Al13Cr4Si4、β-Al(Cr, Fe)Si相弥散分布。腐蚀测试结果显示:实验合金主要的腐蚀方式为晶间腐蚀,热处理后实验合金共晶区域减小,导致腐蚀通道变窄;提高了合金的耐腐蚀性能。当热处理工艺为535℃ 6h+160 26h时,实验合金微观力学性能及耐腐蚀性最佳。  相似文献   

7.
In the present study,we investigate the crystal structure of high-entropy alloys (HEAs) in the form of CoFe2NiMn0.3AlCux(x =0.25,0.50,0.75,and 1.00) and their mechanical and magnetic properties.The CoFe2NiMn0.3AlCux alloys are composed of a mixture of a body-centered cubic (BCC) and a face-centered cubic (FCC) solid solution.The increased amounts of cop-per (Cu) boost both alloy strength and plastic ductility.The CoFe2NiMn0.3AlCu1.0 HEAs demonstrate excellent mechanical properties,such as a high strength of 1832 MPa and a large plastic ductility of 22.38%.Magnetic property measurements on this alloy system indicated high saturated magnetization and high coercivity.The coercivity of the tested alloys lies in the range between 40 and 182 Oe,suggesting that the alloys have semi-hard magnetic properties.This study suggests that the present CoFe2NiMn0.3AlCux HEAs could serve as potential candidates for soft magnets in electromagnetic applications.  相似文献   

8.
Al/Zn比对镁合金组织、力学性能及耐蚀性的影响   总被引:12,自引:0,他引:12  
利用金相显微镜、扫描电镜、XRD、能谱仪、电子万能试验机及电化学工作站等研究了Al/Zn比对镁合金组织、力学性能及耐腐蚀性能的影响.结果表明:当Al/Zn比在1~15的范围内时,合金的相组织主要为α相和β相.在Al/Zn比等于10时,合金的抗拉强度和屈服强度分别达到最大值171.2 MPa和107.5 MPa;由极化曲线和交流阻抗曲线的测量知此时合金的耐蚀性能最好,盐水腐蚀试验测得的腐蚀速率也下降到最小值0.3 mg/(cm2·d).而伸长率则在Al/Zn比等于1时达到最大值2.02%.实验结果还表明:当Al/Zn比小于1时,合金的相组织主要为α相和τ相(Mg32(Al、Zn)49).  相似文献   

9.
The exceptional corrosion resistance and mechanical properties of high-entropy metallic glasses(HE-MGs) are highly desirable for diverse critical applications.However,a long-standing problem of these alloys is that their alloy design approaches are based on limited equiatomic or near-equiatomic ratios.In this study,a novel senary alloy(non-equiatomic Fe_3 Cr_2 Al_2 CuNi_4 Si_5) with amorphous structure was prepared.This alloy exhibited exceptional corrosion resistance and Vickers hardness as high as~1 150 Hv at room temperature.The processing route involved amorphous powder molding via a mechanical alloying and ultrahigh pressure consolidation technique,resulting in an optimal microstructure of amorphous structure with nanoparticles uniformly distributed in the matrix alloy.This approach can effectively inhibit the crystallization of amorphous structure,thus providing a general pathway for manufacturing next-generation non-equiatomic HE-MGs with both exceptional corrosion resistance and strength.  相似文献   

10.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

11.
The effects of vanadium addition on the microstructural evolution and mechanical properties of AlCrFe2Ni2 high-entropy alloy (HEA) were investigated. The results showed that the AlCrFe2Ni2V0.2 HEA was composed of FCC phase, disordered BCC phase, and ordered BCC (B2) phase. With the increase in vanadium content, the formation of FCC phase was inhibited, and a transition from FCC phase to BCC phase occurred. The FCC phase disappeared completely when the value of x exceeds 0.4 in AlCrFe2Ni2Vx HEAs. Besides, the amplitude-modulated microstructure morphology transformed from a B2 phase matrix with dispersed BCC nano-phase into an alternating interconnected B2 and BCC phases. Vanadium element has the function of stabilizing BCC phase and B2 phase in AlCrFe2Ni2Vx alloys. The hardness of AlCrFe2Ni2Vx alloys increased from HV 332.4 to HV 590.7, while the yield strength increased from 765 to 1744.6 MPa with increasing vanadium content, which was mainly due to the decreasing content of FCC phase and the solid solution strengthening of vanadium element. At the same time, the compression ratio of the alloys decreased with the disappearance of the FCC phase. Among the alloys, the AlCrFe2Ni2V0.2 alloy possessed the most excellent comprehensive mechanical properties with yield strength, fracture strength, and compressive ratio 1231.1, 2861.9 MPa, and 44.5%, respectively.  相似文献   

12.
The corrosion behavior of CoCrFeNiMo_x alloys was investigated in aqueous environments, NaCl and H_2SO_4 solutions,respectively, to simulate typical neutral and acidic conditions. The cyclic polarization curves in NaCl and the potentiodynamic curves in H_2SO_4 clearly reveal the beneficial effects of Mo and the detrimental effect of σ-phase on the corrosion resistance. The X-ray photoelectron spectroscopy results of CoCrFeNiMo_x alloys in H_2SO_4 solution indicate that Cr and Mo predominate the corroded surface of the alloys, where Mo primarily exists in the form of MoO_3.  相似文献   

13.
The emergence of eutectic high-entropy alloys(EHEAs) offers new insights into the design of next generation structural alloys,which is due to their stable dual-phase microstructure and outstanding mechanical properties from room to elevated temperatures.In this work,a series of(CoFe_2 NiV_(0.5)Mo_(0.2))_(100-x)Nb_x(0≤x ≤12) EHEAs were designed and prepared via vacuum arc-melting.Typical eutectic microstructure composing lamellar face-centered cubic solid solution phase and C14 Laves phase appears in the as-cast EHEA when x=9.The microstructure turns to hypoeutectic or hypereutectic when x is below or beyond that critical value accordingly.The volume fraction of the hard Laves phase is proportional to the Nb addition,leading to the strength increment yet at the expense of ductility at room temperature.In particular,the EHEA having4 at% Nb shows a compressive strength of 2.1 GPa with an elongation to fracture of 45%,while EHEAs containing 9 and10 at% Nb exhibit ultrahigh yield strengths of over 1.4 GPa.The effect of Nb addition on the corrosion resistance of this Crfree EHEA system was also studied.The EHEA containing 9 at% Nb has the best anti-corrosion performance in the 3.5 wt%NaCl solution at 298±1 K,indicating a good combination of mechanical and corrosion properties.  相似文献   

14.
锡对ZA62合金显微组织及力学性能的影响   总被引:12,自引:1,他引:12  
采用金相显微镜、X射线衍射仪等分析测试手段,研究了锡对ZA62合金显微组织及力学性能的影响。试验结果表明:在ZA62合金中添加少量锡能够析出弥散的Mg2Sn强化相,有效地提高ZA62合金的室温、高温强度;加入过量的锡时,Mg2Sn颗粒明显粗化,反而导致合金的强度和塑性下降。  相似文献   

15.
The extruded Mg-6Li-4Zn-xMn (x = 0, 0.4, 0.8, 1.2 wt%) alloys were prepared, and the microstructure of the test alloys was investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. The corrosion properties were determined by electrochemical measurements and immersion measurements in 3.5% NaCl solution. The results indicate that the extruded Mg-6Li-4Zn-xMn alloys are mainly composed of α-Mg phase, β-Li phase, Mn precipitates and some intermetallic compounds (MgLi2Zn). With the addition of Mn, stable corrosion products were formed on the surface of the test alloy, which can effectively inhibit further corrosion progress and improve the corrosion resistance. Mg-6Li-4Zn-1.2Mn alloy exhibits the best corrosion resistance, attributed to grain refinement, the improvement of the stability of corrosion product film and uniform distribution of fine second phases.  相似文献   

16.
In situ TiC particles-reinforced FeCrNiCu high-entropy alloy matrix composites were prepared by vacuum induction melting method.The reaction mechanisms of the mixed powder(Ti,Cu and C) were analyzed,and the mechanical properties of resultant composites were determined.Cu_4Tiwere formed in the reaction of Cu and Ti when the temperature rose to 1160 K.With the temperature further increased to 1182 K,newly formed Cu_4Tireacted with C to give rise to TiC particles as reinforcement agents.The apparent activation energy for these two reactions was calculated to be 578.7 kJ/mol and 1443.2 kJ/mol,respectively.The hardness,tensile yield strength and ultimate tensile strength of the 15 vol% TiC/FeCrNiCu composite are 797.3 HV,605.1 MPa and 769.2 MPa,respectively,representing an increase by 126.9%,65.9% and 36.0% as compared to the FeCrNiCu high-entropy base alloy at room temperature.However,the elongation-to-failure is reduced from 21.5 to 6.1 %with the formation of TiC particles.It was revealed that Orowan mechanism,dislocation strengthening and load-bearing effect are key factors responsible for a marked increase in the hardness and strength of the high-entropy alloy matrix composites.  相似文献   

17.
The purpose of this work is to study the influences of Al and/or Ti addition on the microstructures, mechanical properties and corrosion properties of CoCrFeNi-(Al, Ti) high entropy alloy(HEA) coatings. Three coatings, AlCoCrFeNi(Ⅰ), CoCrFeNiTi_(0.5)(Ⅱ) and AlCoCrFeNiTi_(0.5)(Ⅲ), were fabricated by laser cladding successfully. The AlCoCrFeNi(Ⅰ) coating exhibited a simple body-centered cubic(BCC) solid-solution structure, whereas the CoCrFeNiTi_(0.5)(Ⅱ) alloy exhibited a face-centered cubic(FCC) solid-solution and a small amount of Laves phase. The BCC phases in AlCoCrFeNiTi _(0.5)(Ⅲ) coating were characterized as Fe–Cr rich disordered BCC phases(A2) and Al-Ni–Ti-rich ordered BCC phases(L2_1) separately. The AlCoCrFeNiTi_(0.5)(Ⅲ) coating with dual-phase BCC structure showed the optimal performance of both mechanical and corrosion properties, which was superior to BCC-based AlCoCrFeNi(Ⅰ) and FCC-based CoCrFeNiTi_(0.5)(Ⅱ) coatings. Nanoindentation tests and quantitative investigations on the strengthening mechanisms of AlCoCrFeNiTi_(0.5)(Ⅲ) coating were conducted, suggesting that the precipitation strengthening is the dominant strengthening mechanism. In short, the addition of moderate amount of Al and Ti in CoCrFeNi HEA shows potential for the development of a high strength and corrosion-resistant coating.  相似文献   

18.
AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能   总被引:3,自引:0,他引:3  
研究了不同Al含量的AlxCoCrCuFeNi多主元高熵合金的微观组织和力学性能.结果表明:微观组织为简单的枝晶和枝晶间组织.当Al含量较低时,合金的晶格结构为单一的FCC相.随着Al含量的增加,原本单一的FCC相逐步转化为FCC相和有序BCC相共同组成的组织.高熵效应以及元素扩散的困难使合金形成了简单的固溶体结构,同时伴随有纳米第二相的析出.与此同时,随着Al含量的增加,合金的硬度HV有了显著的提高,从1530 MPa 提高到7350 MPa,相应地,合金由塑性材料变为中低温脆性材料.  相似文献   

19.
In this work, a series of multi-microalloying Mg alloys with a high degradation rate and high strength was prepared by adding AlCoCrFeNi HEA particles to the Mg melt followed by hot extrusion. The microstructure evolution and mechanical properties of the alloys were studied, meanwhile, the corrosion properties were evaluated by immersion weight loss and electrochemical tests. Results indicated that HEA particles in the Mg melt were decomposed and formed the Ni-rich phase,which was distributed un...  相似文献   

20.
Al-Mg合金的组织及力学性能   总被引:2,自引:0,他引:2  
王莉 《轻合金加工技术》2005,33(11):46-47,53
测试了不同成分的Al-Mg的力学性能,并分析了其显微组织。结果表明,增加Mg含量可以提高合金的强度及塑性,对合金的显微组织影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号