首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
The application of minimum quantity lubrication (MQL) in grinding has emerged as an alternative for reducing the abundant flow of cutting fluids, thus achieving cleaner production. Although considered an innovative technique in grinding operations, its widespread application is hindered due primarily to the high heat generation and wheel pore clogging caused by machined chips, harming the final product quality and increasing tool wear on the machine. This study sought to improve MQL use in grinding. In addition to the conventional MQL injected at the wheel/workpiece interface, a compressed air jet was used to clean the mixture of MQL oil and machined chips from clogged wheel pores. Experiments were conducted using external cylindrical plunge grinding on AISI 4340 quenched and tempered steel, and a vitrified cubic boron nitrite (CBN) wheel. The cooling-lubrication methods employed were the conventional flood coolant application, MQL (without cleaning), and MQL with a cleaning jet directed at the wheel surface at different angles of incidence. The main goal of these experiments was to verify the viability of replacing the traditional abundant flow of cutting fluid with MQL and wheel cleaning. The analyses were conducted by measuring the following output variables of the process: workpiece surface roughness and roundness errors, diametrical wheel wear, acoustic emission generated by the process, and metallographic images of the ground surface and subsurface. Results show the positive effects of implementing the cleaning jet technique as a technological improvement of minimum quantity lubrication in grinding in order to reduce the usage of cutting fluids. The MQL technique with cleaning compressed air jet, for a specific angle of incidence (30°), proved to be extremely efficient in the improvement of the surface quality and accurate workpiece shape; it also reduced wheel wear when compared to the other cooling-lubrication methods that were tested (without a cleaning jet).  相似文献   

2.
Cooling and lubrication are very critical to ensure workpiece quality in grinding due to the high friction and intense heat generation involved in the process. Liquid lubricants have traditionally been used in flood form or minimum quantity lubrication (MQL), raising however, major environmental and economic concerns. The focus of this study is to evaluate the performance of graphite nanoplatelets as a lubricant in surface grinding. The role of graphite's characteristics such as form, size and concentration; and the effect of the carrying medium and the graphite's application method are determined based on an experimental study. The results indicate that graphite nanoplatelets significantly reduce the grinding forces, specific energy, and improve surface finish during surface grinding of hardened D-2 tool steel. A comparison with results obtained in conventional MQL grinding is also provided. The proper selection of graphite, carrying medium and application method can lead to a low cost, nontoxic and simple alternative to solid lubrication or MQL grinding.  相似文献   

3.
Promising alternatives to conventional dry and fluid coolant applications are minimum quantity lubricant (MQL) or near dry grinding. Despite several researches, there have been a few investigations about the influence of MQL parameters on the process results, such as oil flow rate, air pressure, MQL nozzle position and distance from the wheel–workpiece contact zone. The current study aims to show through experiment and modeling, the effects of the above parameters on grinding performance such as grinding forces and surface roughness. The results show that the setting location of the nozzle is an important factor regarding the effective application of MQL oil mist. It has been shown that optimal grinding results can be obtained when the MQL nozzle is positioned angularly toward the wheel (at approximately 10–20° to the workpiece surface). In addition, it is found that the efficient transportation of oil droplets to the contact zone requires higher mass flow rate of the oil mist towards the grains flat area and longer deposition distance of an oil droplet. Applying the new setup, considerable reduction in the grinding forces and surface roughness has been achieved.  相似文献   

4.
Large quantities of coolant–lubricants are still widely used in the metal working industry, generating high consumption and discard costs and impacting the environment. Alternatives to current practices are getting more serious consideration in response to environmental and operational cost pressures. In the grinding process, promising alternatives to conventional dry and fluid coolant applications are minimum quantity lubrication (MQL) or near dry grinding process. Despite several researches, there have been a few investigations about the influence of different types of coolant–lubricants and grinding wheels on the process results. The current study aims to show the effects of the above parameters on grinding performance such as grinding forces and surface quality. The tests have been performed in presence of fluid, air jet and eleven types of coolant–lubricants, as well as, in dry condition. The grinding wheels employed in this study were vitrified bond corundum, resin bond corundum and vitrified bond SG wheels. The results indicate that SG wheels and MQL oils have potential for the development of the MQL process in comparison to vitrified and resin bond corundums and water miscible oils. Also, the lowest thermal damages, material side flow on the ground surface and wheel loading were generated by using the SG grinding wheel in MQL grinding process.  相似文献   

5.
Abrasive material removal processes can be very challenging due to high power requirements and resulting high temperatures. Effective lubrication and cooling is necessary to ensure temperature levels do not become excessive. Current fluid delivery systems are frequently seen to increase production cost due to fluid purchase and disposal. Moreover, waste fluids have a negative environmental impact. One of the successful fluid reduction methods employed in machining is minimum quantity lubrication (MQL), where a small amount of fluid is directed into the machining area in the form of an aerosol. This study aims to improve understanding of the effectiveness of MQL in the fine grinding plane surface grinding regime. This paper presents a comparative study of three cooling methods: conventional flood cooling, dry grinding and grinding with MQL. Common steels EN8, M2 and EN31 were ground with a general purpose alumina wheel. Results obtained demonstrate that MQL can deliver a comparable performance to flood delivery under the conditions investigated. Performance indicators included: grind power, specific forces (tangential and normal), grind temperature and workpiece surface roughness.  相似文献   

6.
At present coolants and lubricants are increasingly recognized as harmful factors for environment and machine operators’ health. Industry and research institutions are looking for new means of reducing or eliminating the use of cutting fluids, both for economical and ecological reasons. This can be done if quality properties of machined surfaces and process parameters in dry and wet machining are comparable. This paper presents an investigation into the influence of cutting zone cooling and lubrication on surface roughness, waviness, profile bearing ratio and topography after turning C45 steel. Dry cutting and minimum quantity lubrication (MQL) results are compared with conventional emulsion cooling. Cutting forces and their components were put under examination as well. The experimental outcomes indicate that the cooling and lubrication conditions affect significantly the investigated process and surface properties. However, the impact of the cooling and lubricating technique depends to a large extent on the applied cutting parameters, namely the cutting speed and feed rate. Turning dry or with MQL with properly selected cutting parameters makes it possible to produce better surface topography characteristics than turning with conventional emulsion cooling. Apart from improving the surface properties the MQL mode of cooling and lubrication also provides environmental friendliness.  相似文献   

7.
This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19′ martensite phase was found on the surface of cryogenically machined samples.  相似文献   

8.
High-speed grooving with applying MQL   总被引:2,自引:2,他引:0  
The performance of minimum quantity lubrication (MQL) in high-speed cutting was evaluated in grooving 0.45%C carbon steel with a carbide tool coated with TiC/TiCN/TiN triple coating layers. MQL with supplying vegetable oil at a small and constant rate of 7 ml/h reduced the corner and flank wears more effectively than a solution type of cutting fluid at high cutting speeds of 4 and 5 m/s. In MQL grooving, the wears decreased drastically with increasing the pressure of air supply. This suggested that the air supply took an important role in transporting the oil mist to the interface between the flank wear land and machined surface. Then, a controlled oil mist direction (COD) tool was devised and its performance was proved to be high at a reduced rate of oil supply.  相似文献   

9.
High-speed milling of hardened steels generates high cutting temperature and leads to detrimental effects on tool life and workpiece surface finish. In this paper, feasibility study of the minimum quantity lubrication (MQL) in high-speed end milling of NAK80 hardened steel by coated carbide tool was undertaken. Flood cooling and dry cutting experiments were conducted also for comparison. It is found that cutting under flood cooling condition results in the shortest tool life due to severe thermal cracks while the use of MQL leads to the best performance. MQL is beneficial to tool life both in the lower speed cutting and the higher speed cutting conditions. A less viscous oil of MQL is essential in high cutting speed so that cooling effect can be effective. SEM micrograph of the insert shows that the use of MQL in high-speed cutting can delay welding of chips on the tool and hence prolongs tool life as compared with dry cutting condition. The application of MQL also improves machined surface finish in high-speed milling of die steels.  相似文献   

10.
Nanofluid, fluid suspensions of nanometer sized particles are revolutionizing the field of heat transfer area. Addition of nano-particles to the base fluid also alters the lubricating properties by reducing the friction. In grinding process, friction between the abrasive grains and the workpiece is a key issue governing the main grinding output. It has a direct influence on grinding force, power, specific energy and wheel wear. Moreover, high friction force increases the heat generation and lead to thermal damage in the surface layer of the ground work. Hence, any effort towards the friction control will enhance the component quality significantly. In this study, nanofluid as metal working fluid (MWF) is made by adding 0.05, 0.1, 0.5 and 1% volume concentration of Al2O3 and CuO nano-particles to the water during the surface grinding of Ti–6Al–4V in minimum quantity lubrication (MQL) mode. Surface integrity of ground surface, morphology of the wheel, and chip formation characteristics are studied using surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and stereo zoom microscopy (SZM). Coefficient of friction was estimated On-Machine using the measured forces. The results showed that the type of nanoparticle and its concentration in base fluid and the MQL flow rate play a significant role in reducing friction. Application of nanofluid leads to the reduction of tangential forces and grinding zone temperature. The cooling effect is also evident from the short C-type chip formation. MQL application with Al2O3 nanofluid helps in effective flushing of chip material from the grinding zone, thereby solving the main problem during the grinding of Ti–6Al–4V.  相似文献   

11.
《CIRP Annals》2020,69(1):161-164
The excellent high temperature performance of gamma titanium aluminium (γ-TiAl) intermetallic not only makes itself a promising aero-engine material to replace Ni-based supperalloys but also poses machining challenges. A novel hybrid machining process namely blasting erosion arc grinding (BEAG) is proposed to process γ-TiAl. In this process, a creatively designed tool is implemented to perform high efficiency blasting erosion arc machining (BEAM) with an electrode and further polish the arc machined surface with the grinding part simultaneously. The experimental results illustrate that compared to BEAM and grinding, BEAG obtains a considerable material removal rate with a good surface quality.  相似文献   

12.
The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Application of cutting fluids changes the performance of machining operations because of their lubrication, cooling, and chip flushing functions. But the conventional cutting fluids are not that effective in such high production machining, particularly in continuous cutting of materials likes steels. Minimum quantity lubrication (MQL) presents itself as a viable alternative for turning with respect to tool wear, heat dissipation, and machined surface quality. This study compares the mechanical performance of MQL to completely dry lubrication for the turning of AISI-1040 steel based on experimental measurement of cutting temperature, chip reduction coefficient, cutting forces, tool wears, surface finish, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip–tool interaction, reduced tool wears, surface roughness, and dimensional deviation.  相似文献   

13.
永磁场磁力研磨TC11钛合金的实验研究   总被引:4,自引:4,他引:0  
肖阳  孙友松  陈光忠 《表面技术》2017,46(2):229-234
目的解决钛合金机械加工后表面质量差的难题。方法采用磁力研磨工艺对TC11钛合金进行了表面光整加工。以表面粗糙度为主要评价指标,研究了磁力研磨工艺参数对钛合金表面质量的影响,并对工艺参数进行了优化。采用优化后的工艺参数对钛合金进行了表面光整加工,研究了磁力研磨工艺对钛合金金相组织的影响。结果当加工间隙为3 mm时,研磨压力适宜,加工后工件表面粗糙度值最小。采用粒径为100目的磨粒使工件表面研磨加工后纹理更细,表面粗糙度值最低。提高主轴转速,工件表面材料去除率增加,当主轴转速为1500 r/min时,加工后工件表面粗糙度值最小。对比工件加工前后的金相组织,加工后试样表面组织晶粒变细,晶界增多,工件表面应力状态由张应力转变为压应力。结论实验确定了较优的工艺参数组合,即:加工间隙为3 mm,磨粒粒径为100目,主轴转速为1500 r/min。采用永磁场磁力研磨工艺,能够大幅降低TC11钛合金表面粗糙度,并使钛合金表面组织得到改善。  相似文献   

14.
Coolant is a term generally used to describe grinding fluids used for cooling and lubricating in grinding process. The main purposes of a grinding fluid can be categorized into lubrication, cooling, transportation of chips, cleaning of the grinding wheel and minimizing the corrosion. On the other hand, grinding fluids have negative influences on the working environment in terms of the health of the machine operator, pollution and the possibility of explosion (for oil). Furthermore, the cost of the grinding fluid, filtering and waste disposal of the metal working fluids is even higher than the tool cost and constitutes a great part of the total cost. Additionally, grinding fluids can not effectively penetrate into the contact zone, are health hazard and their consumption must be restricted. Generally, compared to other machining processes, grinding involves high specific energy. Major fraction of this energy is changed into heat, which makes harmful effect on the surface quality as well as the tool wear. Since there is no coolant lubricant to transfer the heat from the contact zone in dry grinding, surface damages are not preventable. Alternatives to current practices are getting more serious consideration in response to environmental and operational cost pressures. One attractive alternative is the minimum quantity lubrication (MQL) grinding or the near dry grinding (NDG). In near dry grinding an air–oil mixture called an aerosol is fed into the wheel-work contact zone. Compared to dry grinding, MQL grinding substantially enhances cutting performance in terms of increasing wheel life and improving the quality of the ground parts. In this research, the influences of workpiece hardness and grinding parameters including wheel speed, feed rate and depth of cut have been studied on the basis of the grinding forces and surface quality properties to develop optimum grinding performances such as cooling, lubrication, high ecological and environmental safety.  相似文献   

15.
肖军民  谢晋 《机床与液压》2015,43(11):56-58
为改善20Cr Mn Ti渗碳合金钢的表面磨削效果,对20Cr Mn Ti合金钢进行了高速外圆磨削试验,分析了磨削工艺参数对表面粗糙度的影响规律。基于高速磨削试验,利用最小二乘多元线性回归方法,推导并求解出了20Cr Mn Ti合金钢的磨削粗糙度预测模型。利用最优化设计方法和MATLAB优化工具箱,以加工效率为目标函数和以粗糙度预测模型为约束条件,针对企业实际的磨削问题优选了工艺参数。优化的工艺参数在保证表面加工质量的基础上可提高加工效率,这为加工企业降低生产成本提供了重要的理论依据和案例参考。  相似文献   

16.
磨削区内气流场速度和压力分布规律的研究进展   总被引:3,自引:0,他引:3  
在高速旋转的砂轮表面形成一层空气附面层,即气流场。气流场的存在,不仅影响工件的加工精度和加速砂轮的磨损,而且还阻止磨削液有效地注入磨削区,使加工条件恶化,磨削力上升,磨削温度升高,严重影响了工件的加工质量和表面完整性。本文综合分析了在磨削区速度和压力的分布规律及影响因素,为今后工业生产中进一步控制、利用气流场进行磨料流光整加工奠定基础。  相似文献   

17.
Among the industrial gear grinding processes, continuous generating grinding allows the highest material removal rates due to its kinematics. The process capabilities can be further increased by using CBN as a more efficient abrasive material. The research work described in this paper proves the high potential of vitreous bonded CBN grinding worms. Compared to corundum worms, the CBN tools offer significantly better behavior with regard to process stability, gear quality and residual stress on the machined gear tooth flanks. The results also show that a well adapted dressing technology is not only an important prerequisite for the efficient application of CBN worms but it also offers excellent and further possibilities to increase the grinding process performance. Dressable CBN grinding worms have not yet been introduced to industrial gear grinding processes. The paper gives an insight into the preparation and application of these innovative tools not only for academia but also for industry.  相似文献   

18.
This paper describes preliminary results of replacing water-based (aqueous) flood coolant with supercritical CO2-based minimum quantity lubrication (scCO2 MQL) in an external turning operation on an Inconel 750 combustor housing. Two series of tests were performed: the first series to compare tool wear performance observed with aqueous flood coolant and scCO2 MQL under identical machining conditions, and the second series to investigate tool wear performance with scCO2 MQL at higher metal removal rates (MRR) than the MRR used in production practice with aqueous flood coolant. All tests were performed using roughing cuts on unaged Inconel with coated carbide tooling, and vegetable oil lubricant. As a key enabler, special flank jet tool holders were used to eliminate chip blockage of the lubricant stream.In the first series of tests, tool wear was observed to be consistently lower with scCO2 MQL than with the aqueous flood coolant. In the second series of tests, two process conditions were demonstrated for which MRR increased by 25% and 40%, respectively, with scCO2 MQL compared to aqueous flood coolant at equivalent tool life. Notch wear, the limiting factor for tool life under baseline conditions, was reduced for scCO2 MQL, but crater wear and chip hammering were more pronounced. Overall the results indicate that scCO2 MQL can provide increased tool life or material removal rate compared to aqueous flood coolants when machining Inconel 750 and similar nickel alloys by improving lubricity and changing the dominant wear mechanism from rapid notch wear to gradual crater wear and chip hammering. These tests, which involved extended cuts of over 10 min under production conditions, represent an important extension of MQL machining to a hard metal alloy that cannot be machined by conventional MQL methods.  相似文献   

19.
Dry and minimum quantity lubrication (MQL) drilling of cast magnesium alloy AM60 used in the manufacturing of lightweight automotive components have been studied. The maximum and average torque and thrust forces measured during drilling using distilled water (H2O-MQL) and a fatty acid-based MQL fluid (FA-MQL), both supplied at the rate of 10 ml/h, were compared with those generated during flooded (mineral oil) drilling. Tool life during dry drilling was inadequately short, due to excessive magnesium transfer and adhesion to the (HSS steel) drill causing drill failure in less than 80 holes. The use of MQL reduced magnesium adhesion and built-up edge formation, resulting in an increase in tool life as well as reductions in both average torque and thrust forces—prompting a performance similar to that of flooded drilling. The maximum temperature generated in the workpiece during MQL drilling was lower than that observed in dry drilling, and comparable to flooded condition. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements near the holes, revealed a notable softening in the case of dry drilling, but not for MQL drilling. MQL drilling provided a stable drilling performance, which was evident from the uniform torque and force patterns throughout the drilling cycles and also resulted in desirable machining characteristics, including a smooth hole surface and short chip segments.  相似文献   

20.
Assembled camshafts offer an attractive manufacturing alternative over conventional methods to meet the demand for high performance camshafts at reduced costs. The manufacture of camshafts has traditionally involved the casting, forging, or machining of a rough blank which was further machined to the finished cam geometry. A new method will be discussed in which individual near-net shaped components are precision assembled onto a tube to pregrind tolerances. Completion of this camshaft only requires a finish grinding operation. The individual components are manufactured by casting, precision warm or cold forging, high speed turning, or powder metal consolidation. The process allows for material selection flexibility to optimize materials for all components with respect to performance and cost. In addition to the inherent advantages of the assembled camshaft, the process typically results in cost advantages over conventionally processed camshafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号