首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
We propose a method to obtain a complete and accurate 3D model from multiview images captured under a variety of unknown illuminations. Based on recent results showing that for Lambertian objects, general illumination can be approximated well using low-order spherical harmonics, we develop a robust alternating approach to recover surface normals. Surface normals are initialized using a multi-illumination multiview stereo algorithm, then refined using a robust alternating optimization method based on the l(1) metric. Erroneous normal estimates are detected using a shape prior. Finally, the computed normals are used to improve the preliminary 3D model. The reconstruction system achieves watertight and robust 3D reconstruction while neither requiring manual interactions nor imposing any constraints on the illumination. Experimental results on both real world and synthetic data show that the technique can acquire accurate 3D models for Lambertian surfaces, and even tolerates small violations of the Lambertian assumption.  相似文献   

2.
Shape from shading (SfS) and stereo are two fundamentally different strategies for image-based 3-D reconstruction. While approaches for SfS infer the depth solely from pixel intensities, methods for stereo are based on a matching process that establishes correspondences across images. This difference in approaching the reconstruction problem yields complementary advantages that are worthwhile being combined. So far, however, most “joint” approaches are based on an initial stereo mesh that is subsequently refined using shading information. In this paper we follow a completely different approach. We propose a joint variational method that combines both cues within a single minimisation framework. To this end, we fuse a Lambertian SfS approach with a robust stereo model and supplement the resulting energy functional with a detail-preserving anisotropic second-order smoothness term. Moreover, we extend the resulting model in such a way that it jointly estimates depth, albedo and illumination. This in turn makes the approach applicable to objects with non-uniform albedo as well as to scenes with unknown illumination. Experiments for synthetic and real-world images demonstrate the benefits of our combined approach: They not only show that our method is capable of generating very detailed reconstructions, but also that joint approaches are feasible in practice.  相似文献   

3.
We present a method for the integration of nonlinear holonomic constraints in deformable models and its application to the problems of shape and illuminant direction estimation from shading. Experimental results demonstrate that our method performs better than previous Shape from Shading algorithms applied to images of Lambertian objects under known illumination. It is also more general as it can be applied to non-Lambertian surfaces and it does not require knowledge of the illuminant direction. In this paper, (1) we first develop a theory for the numerically robust integration of nonlinear holonomic constraints within a deformable model framework. In this formulation, we use Lagrange multipliers and a Baumgarte stabilization approach (1972). (2) We also describe a fast new method for the computation of constraint based forces, in the case of high numbers of local parameters. (3) We demonstrate how any type of illumination constraint, from the simple Lambertian model to more complex highly nonlinear models can be incorporated in a deformable model framework. (4) We extend our method to work when the direction of the light source is not known. We couple our shape estimation method with a method for light estimation, in an iterative process, where improved shape estimation results in improved light estimation and vice versa. (5) We perform a series of experiments.  相似文献   

4.
Separation of Reflection Components Using Color and Polarization   总被引:4,自引:0,他引:4  
Specular reflections and interreflections produce strong highlights in brightness images. These highlights can cause vision algorithms for segmentation, shape from shading, binocular stereo, and motion estimation to produce erroneous results. A technique is developed for separating the specular and diffuse components of reflection from images. The approach is to use color and polarization information, simultaneously, to obtain constraints on the reflection components at each image point. Polarization yields local and independent estimates of the color of specular reflection. The result is a linear subspace in color space in which the local diffuse component must lie. This subspace constraint is applied to neighboring image points to determine the diffuse component. In contrast to previous separation algorithms, the proposed method can handle highlights on surfaces with substantial texture, smoothly varying diffuse reflectance, and varying material properties. The separation algorithm is applied to several complex scenes with textured objects and strong interreflections. The separation results are then used to solve three problems pertinent to visual perception; determining illumination color, estimating illumination direction, and shape recovery.  相似文献   

5.
Photometric stereo methods seek to reconstruct the 3d shape of an object from motionless images obtained with varying illumination. Most existing methods solve a restricted problem where the physical reflectance model, such as Lambertian reflectance, is known in advance. In contrast, we do not restrict ourselves to a specific reflectance model. Instead, we offer a method that works on a wide variety of reflectances. Our approach uses a simple yet uncommonly used property of the problem— the sought after normals are points on a unit hemisphere. We present a novel embedding method that maps pixels to normals on the unit hemisphere. Our experiments demonstrate that this approach outperforms existing manifold learning methods for the task of hemisphere embedding. We further show successful reconstructions of objects from a wide variety of reflectances including smooth, rough, diffuse and specular surfaces, even in the presence of significant attached shadows. Finally, we empirically prove that under these challenging settings we obtain more accurate shape reconstructions than existing methods.  相似文献   

6.
BRDF invariant stereo using light transport constancy   总被引:1,自引:0,他引:1  
Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.  相似文献   

7.
Our goal is to reconstruct both the shape and reflectance properties of surfaces from multiple images. We argue that an object-centered representation is most appropriate for this purpose because it naturally accommodates multiple sources of data, multiple images (including motion sequences of a rigid object), and self-occlusions. We then present a specific object-centered reconstruction method and its implementation. The method begins with an initial estimate of surface shape provided, for example, by triangulating the result of conventional stereo. The surface shape and reflectance properties are then iteratively adjusted to minimize an objective function that combines information from multiple input images. The objective function is a weighted sum of stereo, shading, and smoothness components, where the weight varies over the surface. For example, the stereo component is weighted more strongly where the surface projects onto highly textured areas in the images, and less strongly otherwise. Thus, each component has its greatest influence where its accuracy is likely to be greatest. Experimental results on both synthetic and real images are presented.  相似文献   

8.
Improving shape depiction under arbitrary rendering   总被引:1,自引:0,他引:1  
Based on the observation that shading conveys shape information through intensity gradients, we present a new technique called Radiance Scaling that modifies the classical shading equations to offer versatile shape depiction functionalities. It works by scaling reflected light intensities depending on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated with surface feature variations, enhancing concavities and convexities. The first advantage of such an approach is that it produces satisfying results with any kind of material for direct and global illumination: we demonstrate results obtained with Phong and Ashikmin-Shirley BRDFs, Cartoon shading, sub-Lambertian materials, perfectly reflective or refractive objects. Another advantage is that there is no restriction to the choice of lighting environment: it works with a single light, area lights, and interreflections. Third, it may be adapted to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Finally, our approach works in real time on modern graphics hardware making it suitable for any interactive 3D visualization.  相似文献   

9.
This paper presents a novel optimization framework for estimating the static or dynamic surfaces with details. The proposed method uses dense depths from a structured‐light system or sparse ones from motion capture as the initial positions, and exploits non‐Lambertian reflectance models to approximate surface reflectance. Multi‐stage shape‐from‐shading (SFS) is then applied to optimize both shape geometry and reflectance properties. Because this method uses non‐Lambertian properties, it can compensate for triangulation reconstruction errors caused by view‐dependent reflections. This approach can also estimate detailed undulations on textureless regions, and employs spatial‐temporal constraints for reliably tracking time‐varying surfaces. Experiment results demonstrate that accurate and detailed 3D surfaces can be reconstructed from images acquired by off‐the‐shelf devices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
传统的立体匹配方法建立在Lambertian的漫反射模型之上,漫反射模型的立体匹配在一个图像中大部分是有效的,但是在处理图像中包含镜面反射部分时结果会产生严重的匹配错误.为了解决个问题,根据二色反射模型引入一种漫反射和镜面反射的分离方法,匹配图像中存在镜面反射部分时先滤除掉镜面反射再进行匹配,在镜面反射部分也能匹配得到正确的视差.实验结果证明该方法很有效.  相似文献   

11.
This paper presents subdivision‐based representations for both lighting and geometry in shape‐from‐shading. A very recent shading‐based method introduced a per‐vertex overall illumination model for surface reconstruction, which has advantage of conveniently handling complicated lighting condition and avoiding explicit estimation of visibility and varied albedo. However, due to its discrete nature, the per‐vertex overall illumination requires a large amount of memory and lacks intrinsic coherence. To overcome these problems, in this paper we propose to use classic subdivision to define the basic smooth lighting function and surface, and introduce additional independent variables into the subdivision to adaptively model sharp changes of illumination and geometry. Compared to previous works, the new model not only preserves the merits of the per‐vertex illumination model, but also greatly reduces the number of variables required in surface recovery and intrinsically regularizes the illumination vectors and the surface. These features make the new model very suitable for multi‐view stereo surface reconstruction under general, unknown illumination condition. Particularly, a variational surface reconstruction method built upon the subdivision representations for lighting and geometry is developed. The experiments on both synthetic and real‐world data sets have demonstrated that the proposed method can achieve memory efficiency and improve surface detail recovery.  相似文献   

12.
We present an optimal generalisation of the 4-light photometric stereo technique for an arbitrary number of Q illuminants. We assume that the surface reflectance can be approximated by the Lambertian model plus a specular reflection. The algorithm works in a recursive manner eliminating the pixel intensities affected by shadows or highlights, based on a least squares error technique, retaining only the information coming from illumination directions that can be used for photometric stereo reconstruction of the normal of the corresponding surface patch. We report results for both simulated and real surfaces and compare them with the results of other state of the art photometric stereo algorithms.  相似文献   

13.
We present a restoration framework to reduce undesirable distortions in imaged documents. Our framework is based on two components: (1) an image inpainting procedure that can separate non-uniform illumination (and other) artifacts from the printed content and (2) a shape-from-shading (SfS) formulation that can reconstruct the 3D shape of the document's surface. Used either piecewise or in its entirety, this framework can correct a variety of distortions including shading, shadow, ink-bleed, show-through, perspective and geometric distortions, for both camera-imaged and flatbed-imaged documents. Our overall framework is described in detail. In addition, our SfS formulation can be easily modified to target various illumination conditions to suit different real-world applications. Results on images of synthetic and real documents demonstrate the effectiveness of our approach. OCR results are also used to gauge the performance of our approach.  相似文献   

14.
Stereo image analysis is based on establishing correspondences between a pair of images by determining similarity measures for potentially corresponding image parts. Such similarity criteria are only strictly valid for surfaces with Lambertian (diffuse) reflectance characteristics. Specular reflections are viewpoint dependent and may thus cause large intensity differences at corresponding image points. In the presence of specular reflections, traditional stereo approaches are often unable to establish correspondences at all, or the inferred disparity values tend to be inaccurate, or the established correspondences do not belong to the same physical surface point. The stereo image analysis framework for non-Lambertian surfaces presented in this contribution combines geometric cues with photometric and polarimetric information into an iterative scheme that allows to establish stereo correspondences in accordance with the specular reflectance behaviour and at the same time to determine the surface gradient field based on the known photometric and polarimetric reflectance properties. The described approach yields a dense 3D reconstruction of the surface which is consistent with all observed geometric and photopolarimetric data. Initially, a sparse 3D point cloud of the surface is computed by traditional blockmatching stereo. Subsequently, a dense 3D profile of the surface is determined in the coordinate system of camera 1 based on the shape from photopolarimetric reflectance and depth technique. A synthetic image of the surface is rendered in the coordinate system of camera 2 using the illumination direction and reflectance properties of the surface material. Point correspondences between the rendered image and the observed image of camera 2 are established with the blockmatching technique. This procedure yields an increased number of 3D points of higher accuracy, compared to the initial 3D point cloud. The improved 3D point cloud is used to compute a refined dense 3D surface profile. These steps are iterated until convergence of the 3D reconstruction. An experimental evaluation of our method is provided for areas of several square centimetres of forged and cast iron objects with rough surfaces displaying both diffuse and significant specular reflectance components, where traditional stereo image analysis largely fails. A comparison to independently measured ground truth data reveals that the root-mean-square error of the 3D reconstruction results is typically of the order 30–100 μm at a lateral pixel resolution of 86 μm. For two example surfaces, the number of stereo correspondences established by the specular stereo algorithm is several orders of magnitude higher than the initial number of 3D points. For one example surface, the number of stereo correspondences decreases by a factor of about two, but the 3D point cloud obtained with the specular stereo method is less noisy, contains a negligible number of outliers, and shows significantly more surface detail than the initial 3D point cloud. For poorly known reflectance parameters we observe a graceful degradation of the accuracy of 3D reconstruction.  相似文献   

15.
Complex reflectance phenomena such as specular reflections confound many vision problems since they produce image ‘features’ that do not correspond directly to intrinsic surface properties such as shape and spectral reflectance. A common approach to mitigate these effects is to explore functions of an image that are invariant to these photometric events. In this paper we describe a class of such invariants that result from exploiting color information in images of dichromatic surfaces. These invariants are derived from illuminant-dependent ‘subspaces’ of RGB color space, and they enable the application of Lambertian-based vision techniques to a broad class of specular, non-Lambertian scenes. Using implementations of recent algorithms taken from the literature, we demonstrate the practical utility of these invariants for a wide variety of applications, including stereo, shape from shading, photometric stereo, material-based segmentation, and motion estimation.  相似文献   

16.
正则化方法在线性SFS问题中的应用   总被引:1,自引:1,他引:0  
线性ShapefromShading问题(LSFS)是一类特殊的ShapefromShading问题,此时反射图是表面梯度分量的线性组合的函数。文章在待恢复表面平滑和已知光照方向等假定下,把线性SFS问题正则化,并利用Kaczmarz算法求解得到线性方程组。此种方法能处理区域形状不规则和边界条件不完备的情况。文章用Kaczmarz算法给出了一种从不可积向量场求得最接近的可积向量场的方法,该方法能处理区域形状不规则的情况。  相似文献   

17.
We present a novel stereo‐to‐multiview video conversion method for glasses‐free multiview displays. Different from previous stereo‐to‐multiview approaches, our mapping algorithm utilizes the limited depth range of autostereoscopic displays optimally and strives to preserve the scene's artistic composition and perceived depth even under strong depth compression. We first present an investigation of how perceived image quality relates to spatial frequency and disparity. The outcome of this study is utilized in a two‐step mapping algorithm, where we (i) compress the scene depth using a non‐linear global function to the depth range of an autostereoscopic display and (ii) enhance the depth gradients of salient objects to restore the perceived depth and salient scene structure. Finally, an adapted image domain warping algorithm is proposed to generate the multiview output, which enables overall disparity range extension.  相似文献   

18.
In this paper a novel framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features is presented. Based on the analysis of at least two pixel-synchronous images of the scene under different illumination conditions, this framework combines a shape from shading approach for estimating surface gradients and altitude variations on small scales with a shadow analysis method that allows for the determination of the large-scale properties of the surface. As a first step, the result of shadow analysis is used for selecting a consistent solution of the shape from shading reconstruction algorithm. As a second step, an additional error term derived from the fine-structure of the shadow is incorporated into the reconstruction algorithm. This approach is extended to the analysis of two or more shadows under different illumination conditions leading to an appropriate initialization of the shape from shading algorithm. The framework is applied to the astrogeological task of three-dimensional reconstruction of regions on the lunar surface using ground-based CCD images and to the machine vision task of industrial quality inspection.  相似文献   

19.
We present a Bayesian approach to the machine vision processes of shape-from-shading and photometric stereo, also considering the associated question of the detection of shape discontinuities. The shape reconstruction problem is formulated as a maximum a posteriori (MAP) estimation from probability distributions of Gibbs form, and is solved via simulated annealing. In shape-from-shading, our formulation leads to a constrained optimization problem, where the constraints come from the image irradiance equation and from the incorporation of the necessary boundary conditions. In photometric stereo, we are able to estimate shape directly from degraded input images. We also propose an edge-detection algorithm that works cooperatively with the reconstruction process, employing the shape estimates to locate the discontinuities of the reconstructed surface. We show results of the application of our framework both to synthetic and to real imagery.  相似文献   

20.
In this paper we show how to estimate facial surface reflectance properties (a slice of the BRDF and the albedo) in conjunction with the facial shape from a single image. The key idea underpinning our approach is to iteratively interleave the two processes of estimating reflectance properties based on the current shape estimate and updating the shape estimate based on the current estimate of the reflectance function. For frontally illuminated faces, the reflectance properties can be described by a function of one variable which we estimate by fitting a curve to the scattered and noisy reflectance samples provided by the input image and estimated shape. For non-frontal illumination, we fit a smooth surface to the scattered 2D reflectance samples. We make use of a novel statistical face shape constraint which we term ‘model-based integrability’ which we use to regularise the shape estimation. We show that the method is capable of recovering accurate shape and reflectance information from single grayscale or colour images using both synthetic and real world imagery. We use the estimated reflectance measurements to render synthetic images of the face in varying poses. To synthesise images under novel illumination, we show how to fit a parametric model of reflectance to the estimated reflectance function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号