首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Yb2O3 (10 mol%) and Gd2O3 (20 mol%) doped SrZrO3 was investigated as a material for thermal barrier coating (TBC) applications. The thermal expansion coefficients (TECs) of sintered bulk Sr(Zr0.9Yb0.1)O2.95 and Sr(Zr0.8Gd0.2)O2.9 were recorded by a high-temperature dilatometer and revealed a positive influence on phase transformations of SrZrO3 by doping Yb2O3 or Gd2O3. The results for the thermal conductivities of Sr(Zr0.9Yb0.1)O2.95 and Sr(Zr0.8Gd0.2)O2.9 indicated that both dopants can reduce the thermal conductivity of SrZrO3. Mechanical properties (Young's modulus, hardness, and fracture toughness) of dense Sr(Zr0.9Yb0.1)O2.95 and Sr(Zr0.8Gd0.2)O2.9 showed lower Young's modulus, hardness and comparable fracture toughness with respect to YSZ. The cycling lifetimes of Sr(Zr0.9Yb0.1)O2.95/YSZ and Sr(Zr0.8Gd0.2)O2.9/YSZ double layer coatings (DLC), which were prepared by plasma spraying, were comparable to that of YSZ at operating temperatures <1300 °C. However, the cycling lifetime of Sr(Zr0.9Yb0.1)O2.95/YSZ DLC was 25% longer, whereas Sr(Zr0.8Gd0.2)O2.9/YSZ DLC had a shorter lifetime compared to the optimized YSZ coating at operating temperatures >1300 °C.  相似文献   

2.
La2Ce2O7 (LC) is receiving increasing attention due to its lower thermal conductivity, better phase stability and higher sintering resistance than yttria partially stabilized zirconia (YSZ). However, the low fracture toughness and the sudden drop of CTE at approximately 350?°C greatly limit its application. In this study, the LC/50?vol.% YSZ composite TBC was deposited by supersonic atmospheric plasma spraying (SAPS). Compared to YSZ or double layered LC/YSZ coating, the thermal cycling life of LC/50?vol.% YSZ coating with CMAS attack increased by 93% or 91%. The latter possessed higher fracture toughness (1.48?±?0.26?MPa?m1/2) than LC (0.72?±?0.15?MPa?m1/2) and better CMAS corrosion resistance than YSZ owing to the formation of Ca2(LaxCe1-x)8(SiO4)6O6–4x with <001> orientation perpendicular to the coating surface. The sudden CTE decrease of LC was fully suppressed in LC/50?vol.% YSZ coating due to the change of temperature dependent residual stresses induced by YSZ.  相似文献   

3.
《Ceramics International》2016,42(7):7950-7961
A composite coating composed of La2Ce2O2 (LCO) and yttria-stabilized zirconia (YSZ) in a weight ratio of 1:1 was deposited by the plasma spraying using a blended YSZ and LCO powders, and the stability of the LCO/YSZ interface exposed to a high temperature was investigated. The LCO/YSZ deposits were exposed at 1300 °C for different durations. The microstructure evolution at the LCO/YSZ interface was investigated by quasi-in-situ scanning electron microscopy assisted by X-ray energy-dispersive spectrum analyses and X-ray diffraction measurements. At an exposure temperature of 1300 °C, the grain morphology of LCO splats in contact with YSZ splats changed from columnar grains to quasi-axial grains with interface healing, and some grains tended to disappear during the thermal exposure. The results indicate that the phases in LCO–YSZ composite coating are not stable at 1300 °C. The element La in the LCO splat diffused towards the adjacent YSZ splat during the exposure, generating the reaction product layers composed of La2Zr2O7 between the LCO and YSZ splats. After exposed for 200 h, the composite coating consisted of a mixture of mainly La2Zr2O7 and CeO2 and a minor amount of YSZ, accounting for the unusual decrease in the thermal conductivity at the late stage of exposure.  相似文献   

4.
In this research work, aluminium oxide/yttria stabilized zirconia (20%Al2O3/80%8YSZ) and ceria/yttria stabilized zirconia (20%CeO2/80%8YSZ) were coated through atmospheric plasma spray technique (APS) as thermal barrier coating (TBC) over CoNiCrAlY bond coat on aluminium alloy (Al-13%Si) substrate piston crown material and their thermal cycling behavior were studied experimentally. Thermal cycle test of both samples were conducted at 800?°C. Microstructural, phase and elemental analysis of the TBC coatings were experimentally investigated. The performance, combustion and emission characteristics of Al2O3/8YSZ, CeO2/8YSZ TBC coated and uncoated standard diesel engine were experimentally investigated. The test results revealed that CeO2/8YSZ based TBC has an excellent thermal cycling behavior in comparison to the Al2O3/8YSZ based TBC. The spallation of the Al2O3/8YSZ TBC occurred mainly due to the formation of thermally grown oxide (TGO), and growth of residual stresses at top coating and bond coating interface. The experimental results also revealed that the increase of brake thermal efficiency and reduction of specific fuel consumption for both TBC coated engine. Further reduction of HC, CO and smoke and increase of NOx emission were recorded for both TBC coated engine compared to the standard diesel engine.  相似文献   

5.
The properties of ZrO2 co-stabilized by CeO2 and TiO2 ceramic bulks were investigated for potential thermal barrier coating (TBC) applications. Results showed that the (Ce0.15Tix)Zr0.85-xO7 (x?=?0.05, 0.10, 0.15) compositions with single tetragonal phase were more stable than the traditional 8YSZ at 1573?K. These compositions also showed a large thermal expansion coefficient (TEC) and a high fracture toughness, which were comparable to those of YSZ. However, the phase stability, fracture toughness and sintering resistance of the CeO2-TiO2-ZrO2 system showed a decline tendency with the increase of TiO2 content. The TEC of the ceramic bulks decreased with increase of TiO2 content as well because the crystal energy was enhanced with increasing substitution of Zr4+ by smaller Ti4+. The (Ce0.15Ti0.05)Zr0.8O2 had the best comprehensive properties among the (Ce0.15Tix)Zr0.85-xO2 compositions as well as a low thermal conductivity. Therefore, it can be explored as a TBC candidate material for high-temperature applications.  相似文献   

6.
La2Ce2O7 (LC) is a new promising thermal barrier coating (TBC) material for high-temperature applications. However, the sudden decrease of thermal expansion coefficient (TEC) at ∼623 K limits its application. In this study, the plasma-sprayed La2Ce1.7Ta0.3O7.15 (LCT) coating was developed by partial substitution of Ce4+ in LC with Ta5+. LCT coating shows lower thermal conductivity between 298 K and 1273 K (0.54–0.71 W/(m·K)) than LC coating (0.65–0.85 W/(m·K)) and the traditional yttria partially stabilized zirconia (YSZ) coating (1.53–1.72 W/(m·K)). It also exhibits excellent thermal stability at least up to 1573 K for 1000 h. What is more, the sudden TEC drop is suppressed owing to the reduced oxygen vacancy concentration governed by Ta5+-substitution content. As a result, LCT TBC shows an improved thermal cycling lifetime in an air furnace as compared to LC TBC.  相似文献   

7.
La2Ce2O7 with low thermal conductivity as a potential candidate of thermal barrier coatings (TBCs) was co-doped with (Ca, Fe) or (Sr, Mn) in order to further improve its thermal radiation at high temperatures. The microstructure, chemical composition, infrared emission properties (reflection and absorption properties) and thermal cycling lifetime of the coatings were respectively investigated. The results revealed that La2-xCaxCe2-xFexO7+δ and La2-xSrxCe2-xMnxO7+δ coatings had defected fluorite structure and their infrared emittances were much higher than that of the parent La2Ce2O7. The superior infrared emission could be ascribed to the enhancement of the intrinsic absorption (electron transition absorption), free-carrier absorption and impurity absorption as well as lattice vibration absorption. However, the thermal cycling lifetime of La2Ce2O7 coatings presented a reduction after the (Ca, Fe) or (Sr, Mn) substitution, primarily due to the decrease in the fracture toughness and the increase in the thermal conductivity.  相似文献   

8.
《Ceramics International》2023,49(7):10525-10534
Thermal barrier coatings are an effective technology for improving the high-temperature performance of hot section components in gas turbine engine. Due to their excellent properties, high-entropy oxides are considered to be promising materials for thermal barrier coatings. Laser cladding is a coating preparation technology and the top coat prepared by laser cladding technology has an important application value for thermal barrier coatings. In this work, to improve the thermal cycling behavior of the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide coating, a bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide layer and the YSZ layer was designed and fabricated by laser cladding on the NiCoCrAlY alloy surface. The microstructure, phase and mechanical properties of the coating were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and micro-hardness and nanoindentation tests, respectively. The results show that a bi-layer La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7/YSZ coating was successfully prepared by the laser cladding method, and shows good bonding at the interface between the layers. The high-entropy oxide layer maintains a relatively stable defective fluorite structure and its microstructure exists in the stable cellular and dendrite crystalline state after laser cladding. The high-entropy oxide layer prepared by laser cladding showed an average elastic modulus of 167 GPa and an average hardness of 1022.8HV in nanoindentation tests. Thermal cycling of the coating was carried out at 1050 °C. Failure of the bi-layer coating occurred after 60 thermal cycles at 1050 °C. Thermal stresses between different layers are calculated during thermal cycling. Due to its excellent mechanical properties, the bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide and YSZ layers is expected to become an effective high-entropy oxide thermal barrier coating.  相似文献   

9.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications.  相似文献   

10.
《Ceramics International》2023,49(7):10936-10945
Pyrochlore-type La2Zr2O7 (LZ) is a promising candidate for high-temperature thermal barrier coatings (TBCs). However, its thermal expansion coefficient and low fracture toughness are not optimal for such application and thus, need to be improved. In this study, we systematically report the effect of CeO2 addition on phase formation, oxygen-ion diffusion, and thermophysical and mechanical properties of full compositions La2(Zr1?xCex)2O7 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1). La2(Zr1?xCex)2O7 exhibits a pyrochlore structure at x ≤ 0.3, while a fluorite structure is observed outside this range. With the increase in CeO2 content, thermal expansion coefficient and oxygen-ion diffusivity in La2(Zr1?xCex)2O7 are increased. Oxygen-ion diffusivity of La2(Zr1?xCex)2O7 is two orders of magnitude less than that of classical 8YSZ. Among La2(Zr1?xCex)2O7 compounds, La2(Zr0.7Ce0.3)2O7 and La2(Zr0.5Ce0.5)2O7 exhibit relatively low oxygen diffusivities. The composition La2(Zr0.5Ce0.5)2O7 presents the lowest thermal conductivity due to the strongest phonon scattering and also the highest fracture toughness due to the solid-solution toughening. The highest sintering resistance is achieved by the composition La2(Zr0.7Ce0.3)2O7 because of its ordered pyrochlore structure and high atomic mass of Ce. Based on these results, the compositions La2(Zr0.5Ce0.5)2O7 and La2(Zr0.7Ce0.3)2O7 are alternatives for classical 8YSZ for TBC materials operating at ultrahigh temperatures.  相似文献   

11.
《Ceramics International》2015,41(6):7318-7324
Gadolinium zirconate (Gd2Zr2O7, GZ) as one of the promising thermal barrier coating materials for high-temperature application in gas turbine was toughened by nanostructured 3 mol% yttria partially-stabilized zirconia (YSZ) incorporation. The fracture toughness of the composite of 90 mol% GZ-10 mol% YSZ (GZ–YSZ) was increased by about 60% relative to the monolithic GZ. Both the GZ and GZ–YSZ composite coatings were deposited by atmospheric plasma spraying on Ni-base superalloys and then thermal-shock tested under the same conditions. The thermal-shock lifetime of GZ–YSZ composite coating was improved, which is believed to be mainly attributed to the enhancement of fracture toughness by the addition of YSZ. In addition, the failure mechanisms of the thermal-shock tested GZ–YSZ composite coatings were discussed.  相似文献   

12.
《Ceramics International》2020,46(17):26841-26853
To study the impact of rare earth oxide doping on the thermal failure of thermal barrier coatings, 0.5 mol%, 1.0 mol% and 1.5 mol% Nd2O3-doped YSZ coatings were prepared by explosive spraying. SEM, XRD, EDS and microhardness testing were used to analyse the effect of different rare earth oxide doping contents on the morphology, composition and mechanical properties of the coatings. With an increase in the Nd2O3 doping content, the porosity of the coatings was reduced. The decrease in the porosity increased the compactness of the coatings and improved the microhardness and fracture toughness. The bonding strength and thermal shock resistance of the coatings were the highest among the samples herein when the rare earth doping content was 1.0 mol%, and the values were 37.6 MPa and 200 times, respectively. The thermal shock failure mode of the coating was mainly due to the exfoliation of the inner layer of the ceramic layer. The luminous intensity of the coating increased with increasing rare earth oxide doping content, and the emission spectrum of the Nd2O3-modified YSZ coating after the thermal shock test produced a new emission peak at 594 nm, which decreased at 708 nm.  相似文献   

13.
Perovskite-type SrZrO3 was investigated as an alternative to yttria-stabilized zirconia (YSZ) material for thermal barrier coating (TBC) applications. Three phase transformations (orthorhombic↔pseudo-tetragonal↔tetragonal↔cubic) were found only by heat capacity measurement, whereas the phase transformation from orthorhombic to pseudo-tetragonal was found in thermal expansion measurements. The thermal expansion coefficients (TECs) of SrZrO3 coatings were at least 4.5% larger than YSZ coatings up to 1200°C. Mechanical properties (Young's modulus, hardness, and fracture toughness) of dense SrZrO3 showed lower Young's modulus, hardness, and comparable fracture toughness with respect to YSZ. The "steady-state" sintering rate of a SrZrO3 coating at 1200°C was 1.04 × 10−9 s−1, which was less than half that of YSZ coating at 1200°C. Plasma-sprayed coatings were produced and characterized. Thermal cycling with a gas burner showed that at operating temperatures ∼1250°C the cycling lifetime of SrZrO3/YSZ double-layer coating (DLC) was more than twice as long as SrZrO3 coating and comparable to YSZ coating. However, at operating temperatures >1300°C, the cycling lifetime of SrZrO3/YSZ DLC was comparable to the optimized YSZ coating, indicating SrZrO3 might be a promising material for TBC applications at higher temperatures compared with YSZ.  相似文献   

14.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

15.
Due to the limited temperature capability of current YSZ thermal barrier coating (TBC) material, considerable effort has been expended world-wide to research new candidates for TBC applications above 1200?°C. Our study suggested that Sc2O3 and Y2O3 co-doped ZrO2 (ScYSZ) had excellent t’ phase stability even after annealed at 1500?°C for 336?h. The thermal expansion coefficient of ScYSZ was comparable to the value of YSZ. The thermal conductivity of fully dense ScYSZ was in the range of 2.13–1.91?W?m?1?K?1 (25–1300?°C), approximately 25% lower than that of YSZ. Although the fracture toughness of dense ScYSZ was slightly lower than YSZ, an evident decline in elastic modulus was found. Additionally, thermal cycling lifetime of plasma sprayed ScYSZ coating (914 cycles) at 1300?°C was about 2.6 times longer than its YSZ counterpart. The superior comprehensive properties confirm that ScYSZ is a prospective candidate material for high-temperature TBC application.  相似文献   

16.
《Ceramics International》2023,49(8):12348-12359
Current work pursues generating controlled bimodal microstructure by plasma spraying of micrometer-sized Al2O3 and nanostructured spray-dried agglomerate with reinforcement of 20 wt% of 8 mol % yttria stabilized zirconia (8YSZ) and 4 wt% carbon nanotube (CNT) as potential thermal barrier coating (TBC) on the Inconel 718 substrate. Composite coatings exhibit bimodal microstructure of: (i) fully melted and resolidified microstructured region (MR), and (ii) partially melted and solid state sintered nanostructured regions (NR). Reinforcement with 8YSZ has led to an increase in hardness from ∼12.8 GPa (for μ-Al2O3) to ∼13.9 GPa in MR of reinforced Al2O3-YSZ composite. Further, with the addition of CNT in Al2O3-8YSZ reinforced composite, hardness of MR has remained similar ∼13.9 GPa (8YSZ reinforced) and ∼13.5 GPa (8YSZ-CNT reinforced), which is attributed to acquiescent nature and non-metallurgical bonding of CNT with MR. Indentation fracture toughness increased from 3.4 MPam0.5 (for μ-Al2O3) to a maximum of 5.4 MPam0.5 (8YSZ- CNT reinforced) showing ∼57.7% improvement, which is due to crack termination at NR, retention of t-ZrO2 (∼3.3 vol%) crack bridging, and CNT pull-out toughening mechanisms. Modified fractal models affirmed that the introduction of bimodal microstructure (NR) i.e., nanometer-sized- Al2O3, nanostructured 8YSZ and CNTs in the μ-Al2O3 (MR) contributes ∼44.6% and ∼72% towards fracture toughness enhancement for A8Y and A8YC coatings. An enhanced contribution of nanostructured phases in toughening microstructured Al2O3 matrix (in plasma sprayed A8YC coating) is established via modified fractal model affirming crack deflection and termination for potential TBC applications.  相似文献   

17.
The measured and calculated lattice parameters, microstructures, and mechanical properties (fracture toughness and microhardness) of CeO2–ZrO2 system ceramics are investigated, using CeO2–ZrO2 solid solution powder prepared by a microwave-induced combustion process. The CeO2–ZrO2 solid solution ceramics were sintered at 1500 °C for 6 h in air; the density of all specimens was greater than 94% of the theoretical density. For Ce1−xZrxO2 (0.00  x  0.50), the measured lattice parameter is in accordance with that of Kim's doped CeO2 model. On the other hand, for x  0.50, the measured values fit Kim's doped ZrO2 model. The fracture toughness and microhardness of CeO2–ZrO2 system ceramics with various compositions were investigated with Vickers indentation. The results showed that the crack mode of CeO2–ZrO2 solid solution was Palmqvist cracks under loads of 1 kg. Generally, the fracture toughness should increase with grain size at the submicron scale. However, larger grains may lead to spontaneous transformation, which should decrease the potential toughening at room temperature. This behavior was observed in the Ce0.25Zr0.75O2 ceramic, which demonstrated a high fracture toughness that may be ascribed to two causes: (1) fine grain size and (2) transformation toughening.  相似文献   

18.
(Gd1−xYbx)2Zr2O7 compounds were synthesized by solid reaction. Yb2O3 doped Gd2Zr2O7 exhibited lower thermal conductivities and higher thermal expansion coefficients (TECs) than Gd2Zr2O7. The TECs of (Gd1−xYbx)2Zr2O7 ceramics increased with increasing Yb2O3 contents. (Gd0.9Yb0.1)2Zr2O7 (GYbZ) ceramic exhibited the lowest thermal conductivity among all the ceramics studied, within the range of 0.8–1.1 W/mK (20–1600 °C). The Young's modulus of GYbZ bulk is 265.6 ± 11 GPa. GYbZ/YSZ double-ceramic-layer thermal barrier coatings (TBCs) were prepared by electron beam physical vapor deposition (EB-PVD). The coatings had an average life of more than 3700 cycles during flame shock test with a coating surface temperature of ∼1350 °C. Spallation failure of the TBC occurred by delamination cracking within GYbZ layer, which was a result of high temperature gradient in the GYbZ layer and low fracture toughness of GYbZ material.  相似文献   

19.
La2Zr2O7 is a promising thermal barrier coating (TBC) material. In this work, La2Zr2O7 and 8YSZ-layered TBC systems were fabricated. Thermal properties such as thermal conductivity and coefficient of thermal expansion were investigated. Furnace heat treatment and jet engine thermal shock (JETS) tests were also conducted. The thermal conductivities of porous La2Zr2O7 single-layer coatings are 0.50–0.66?W?m?1?°C?1 at the temperature range from 100 to 900°C, which are 30–40% lower than the 8YSZ coatings. The coefficients of thermal expansion of La2Zr2O7 coatings are about 9–10?×?10?6?°C?1 at the temperature range from 200 to 1200°C, which are close to those of 8YSZ at low temperature range and about 10% lower than 8YSZ at high temperature range. Double-layer porous 8YSZ plus La2Zr2O7 coatings show a better performance in thermal cycling experiments. It is likely because porous 8YSZ serves as a buffer layer to release stress.  相似文献   

20.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号