首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the effect of Ti-doping on structural, morphological, photoluminescence, optical and photoconductive properties of ZnO thin films. Pure and Ti(1, 3 and 5%)-doped ZnO thin films are deposited by the successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction analysis revealed the single-phase hexagonal wurtzite ZnO structure of all the films. Scanning electron microscope images suggest the formation of rod shaped particles in Ti-doped ZnO thin films. Photoluminescence spectra of all the films show emission peaks centered at 398 nm, 413 nm, 438 nm, 477 nm and 522 nm wavelengths. Optical properties support the semiconducting nature of all the films. The optical bandgap values are estimated to be 3.29 eV, 3.26 eV, 3.19 eV and 3.23 eV for ZnO, ZnO:Ti(1%), ZnO:Ti(3%) and ZnO:Ti(5%) thin films, respectively. Photoconductivity study indicates that ZnO:Ti(3%) thin film exhibits high responsivity, external quantum efficiency and detectivity of 0.30 AW-1, 97% and 5.49 × 1010 Jones, respectively, among all the films. The enhanced photoconductivity of Ti-doped ZnO thin films make them useful for optoelectronic applications.  相似文献   

2.
The present work describes structural, morphological, and antibacterial properties of thin film coatings based on tungsten oxide material on stainless-steel substrates. Thin films were prepared by RF magnetron sputtering of W targets in the oxygen/argon plasma environment in 60 W sputtering power. The characterization of the specimens was made on the basis of microstructure and antibacterial properties of the thin films surface. The effect of O2/Ar ratio on the structure, morphology, and antibacterial properties of the tungsten oxide thin films was studied. Methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) were used to assess the properties of deposited thin films. XRD peak analysis indicates (100) and (200) of WO3 phase with hexagonal structure. Moreover, the micro-strain, grain size, and dislocation density were obtained. It is noteworthy that by increasing the oxygen percentage from 10% to 20%, the grain size decreases from 81 to 23 nm while the film micro-strain and dislocation density increases. The SEM results illustrates that tungsten oxide thin films are made of interconnected nano-points in a chain shape with sphere-shaped grains with diameter variation from 10 to 100 nm. The FTIR spectra displays four distinct bands corresponds to O–W–O bending modes of vibrations and W–O–W stretching modes of the WO3 films. The antibacterial effects of tungsten oxide thin films on steel stainless substrate against Escherichia coli bacteria are also examined for the first time and our observation shows that the number of bacteria on all tungsten oxide samples decreases after 24 h. The samples exhibit an excellent antibacterial performance. This paper renders a strategy through which the tungsten oxide thin films for antibacterial purpose and proposes that WO3 thin films are ideal for various medical applications including stainless steel medical tools, optical coatings, and antibacterial coatings.  相似文献   

3.
Synthesis of novel fullerene derived electron acceptors and characterization of their organic photovoltaic (OPV) properties is important for advancing fundamental knowledge towards developing next generation organic solar cells. We report the synthesis of a novel fulleropyrrolidine derivative C60-fused N-(3-methoxypropyl)-2-(carboxyethyl)-5-(4-cyanophenyl)fulleropyrrolidine (NCPF) by 1,3-dipolar cycloaddition reaction and characterization of NCPF by 1H NMR, 13C NMR, MALDI-TOFMS, FT-IR, UV–Vis and CV. The synthesized NCPF fullerene derivative showed good solubility in common organic solvents such as chlorobenzene and 1,2 dichlorobenzene important for film formation, with optical absorbance and electronic properties comparable to PCBM. Optical micrographs of P3HT:PCBM thin films reveal formation of sparse, phase segregated needle shape PCBM micro-crystalline aggregates after 1 h of annealing at 150 °C whose length follows nucleation and growth kinetics over 24 h. In contrast, the P3HT:NCPF thin films exhibit homogeneity over 24 h, possibly due to weaker interparticle vanderWaals forces and/or stronger interactions with P3HT. This long term morphological stability of P3HT:NCPF is important for extended use in OPV applications. At an order of magnitude smaller scale, AFM of as cast and 10 min annealed at 150 °C P3HT:PCBM and P3HT:NCPF films reveal mostly smooth surfaces, with some NCPF cluster formation. Grazing incidence wide angle X-ray scattering (GIWAXS) measurements of P3HT:NCPF films indicate an increase of P3HT crystallinity with thermal annealing, leading to improvement in device performance. Photovoltaic devices fabricated with the active layer of P3HT:NCPF and P3HT:PCBM sandwiched between ITO/PEDOT:PSS and Al layer showed comparable performance upon short term annealing.  相似文献   

4.
Composite WO3–Nb2O5 thin films were deposited on the glass and fluorine-doped tin oxide (FTO)-coated glass substrates using simple and inexpensive spray pyrolysis technique. The process parameters, like nozzle-to-substrate distance, spray rate, concentration of sprayed solution, etc., were optimized to good quality films. The films were characterized for the structural, morphological, optical, and electrochromic properties. Structural and morphological characterizations of the films were carried out using scanning electron microscopy and X-ray diffraction techniques. Electrochemical properties of the Composite WO3–Nb2O5 thin films were further studied using cyclic-voltammetry, chronoamperometry, chronocoulometry, and electrochemical Impedance spectroscopy.  相似文献   

5.
In the present work, ZnO thin films were irradiated with 700?keV Au+ ions at different fluence (1?× 1013, 1?× 1014, 2?× 1014 and 5?× 1014 ions/cm2). The structural, morphological, optical and electrical properties of pristine and irradiated ZnO thin films were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectroscopy ellipsometry (SE) and four point probe technique respectively. XRD results showed that the crystallite size decreased from pristine value at the fluence 1?×?1013 ions/cm2, with further increase of ion fluence the crystallite size also increased due to which the crystallinity of thin films improved. SEM micrographs showed acicular structures appeared on the ZnO thin film surface at high fluence of 5?×?1014 ions/cm2. FTIR showed absorption band splitting due to the growth of ZnO nanostructures. The optical study revealed that the optical band gap of ZnO thin films changed from 3.08?eV (pristine) to 2.94?eV at the high fluence (5?× 1014 ions/cm2). The electrical resistivity of ZnO thin film decreases with increasing ion fluence. All the results can be attributed to localized heating effect by ions irradiation of thin films and well correlated with each other.  相似文献   

6.
The Cu2ZnSnS4 (CZTS) thin films have been electrodeposited onto the Mo coated and ITO glass substrates, in potentiostatic mode at room temperature. The deposition mechanism of the CZTS thin film has been studied using electrochemical techniques like cyclic voltammetery. For the synthesis of these CZTS films, tri-sodium citrate and tartaric acid were used as complexing agents in precursor solution. The structural, morphological, compositional, and optical properties of the CZTS thin films have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and optical absorption techniques respectively. These properties are found to be strongly dependent on the post-annealing treatment. The polycrystalline CZTS thin films with kieserite crystal structure have been obtained after annealing as-deposited thin films at 550 in Ar atmosphere for 1 h. The electrosynthesized CZTS film exhibits a quite smooth, uniform and dense topography. EDAX study reveals that the deposited thin films are nearly stoichiometric. The direct band gap energy for the CZTS thin films is found to be about 1.50 eV. The photoelectrochemical (PEC) characterization showed that the annealed CZTS thin films are photoactive.  相似文献   

7.
《Ceramics International》2020,46(6):7499-7509
Nanostructured thin films of CuO were deposited on silica glass substrates using reactive DC magnetron sputtering technique. Microstructural, morphological, optical, catalytic and photocatalytic properties of the prepared CuO thin films were examined using FESEM, AFM, Rutherford backscattering spectrometry, XRD, XPS, UV–Vis absorption and PL spectroscopy. FESEM showed nanostructures in the thin films, which were confirmed to be of monoclinic CuO by XRD analysis. Substrate temperature variation (40 °C, 100 °C and 300 °C) was found to significantly alter the optical, morphological, photocatalytic and structural properties of the CuO nanostructured thin film coatings. FESEM and AFM analyses showed decrease in size of nanostructures and surface roughness increase with increase in substrate temperature. Increase in UV–Vis absorbance and PL intensity of CuO thin films with decrease in crystallite size were noticed as the substrate temperature was increased. The prepared nanostructured CuO thin films exhibited highly enhanced photocatalytic activities and degraded dyes (MB and MO) in water in just 40 min under solar exposure and catalytic transformation of 4-nitrophenol (4-NP) took place in just 15 min. The developed CuO nanostructured thin film coatings are very promising for large scale, practical and advanced catalytic reduction of toxic 4-NP and photocatalytic applications in solar driven water purification.  相似文献   

8.
In order to improve the thermal properties of important engineering plastics, a novel kind of liquid crystalline epoxy resin (LCER), 3,3′,5,5′-Tetramethylbiphenyl-4,4′-diyl bis(4-(oxiran-2-ylmethoxy)benzoate) (M1) was introduced to blend with nylon 66 (M2) at high temperature. The effects of M1 on chemical modification and crystallite morphology of M2 were investigated by rheometry, thermo gravimetric analysis (TGA), dynamic differential scanning calorimetry (DSC) and polarized optical microscopy (POM). TGA results showed that the initial decomposition temperature of M2 increased by about 8 °C by adding 7% wt M1, indicating the improvement of thermal stability. DSC results illustrated that the melting point of composites decreased by 12 °C compared to M2 as the content of M1 increased, showing the improvement of processing property. POM measurements confirmed that dimension of nylon-66 spherulites and crystallization region decreased because of the addition of liquid crystalline epoxy M1.  相似文献   

9.
The present work evaluates the effects of plasma power and oxygen mixing ratios (OMRs) on structural, morphological, optical, and electrical properties of strontium titanate SrTiOx (STO) thin films. STO thin films were grown by magnetron sputtering, and later thermal annealing at 700°C for 1 h was applied to improve film properties. X-ray diffraction analysis indicated that as-deposited films have amorphous microstructure independent of deposition conditions. The films deposited at higher OMR values and later annealed also showed amorphous structure while the films deposited at lower OMR value and annealed have nanocrystallinity. In addition, all as-deposited films were highly transparent (~80%–85%) in the visible spectrum and exhibited well-defined main absorption edge, while the annealing improved transparency (90%) within the same spectrum. The calculated direct and indirect optical band gaps for films were in the range of 3.60-4.30 eV as a function of deposition conditions. The refractive index of the films increased with OMRs and the postdeposition annealing. The frequency dependent capacitance measurements at 100 kHz were performed to obtain film dielectric constant values. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 μC/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). The leakage current density was relatively low (3 × 10−8Acm−2 at +0.8 V) indicating that STO films are promising for future dynamic random access memory applications.  相似文献   

10.
A novel conjugated ionomer was prepared from a diamine and a bis(pyrylium salt). Single-walled carbon nanotubes (SWNT) were dispersed in solutions of the ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. These suspensions were used to cast unoriented thin films. In addition, the ionomer/SWNT solutions were used to aid in the dispersal of SWNTs in a soluble, low color polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 1 wt% in a polyimide solution without visual agglomeration. SWNTs were well dispersed in the thin films as evidenced by visual inspection, optical microscopy, and high resolution scanning electron microscopy. The films were further characterized for their electrical and mechanical properties.  相似文献   

11.
《Ceramics International》2016,42(12):13555-13561
In this article, we report a comparative study of the influence of pressure-assisted (1.72 MPa) versus ambient pressure thermal annealing on both ZnO thin films treated at 330 °C for 32 h. The effects of pressure on the structural, morphological, optical, and gas sensor properties of these thin films were investigated. The results show that partial preferential orientation of the wurtzite-structure ZnO thin films in the [002] or [101] planes is induced based on the thermal annealing conditions used (i.e., pressure assisted or ambient pressure). UV–vis absorption measurements revealed a negligible variation in the optical -band gap values for the both ZnO thin films. Consequently, it is deduced that the ZnO thin films exhibit different distortions of the tetrahedral [ZnO4] clusters, corresponding to different concentrations of deep and shallow level defects in both samples. This difference induced a variation of the interface/bulk-surface, which might be responsible for the enhanced optical and gas sensor properties of the pressure-assisted thermally annealed film. Additionally, pressure-assisted thermal annealing of the ZnO films improved the H2 sensitivity by a factor of two.  相似文献   

12.
This study is an investigation on the interplay between supramolecular organization and optical properties of thin films of conjugated polymers with fluorinated vinylene units such as poly[2-(2-ethylhexyloxy)-5-methoxy]-1,4-phenylenedifluorovinylene (MEH-PPDFV) and poly(2-methoxy-5-propyloxysulfonatephenylenedifluorovinylene) (MPS-PPDFV), which are both PPV polymers with fluorinated double bonds with alkoxy chains in the 2 and 5 positions. MEH-PPDFV is the fluorinated version of the widely investigated MEH-PPV, and MPS-PPDFV is characterized by the presence of ionic alkoxy side chains. This interplay is elucidated exploiting atomic force microscopy, spectroscopic ellipsometry and photoluminescence to obtain complementary information. It is demonstrated that the presence of F-atoms in the vinylene units of the MEH-PPDFV yields a blue optical band gap with the maximum of the fundamental HOMO-LUMO transition and of the room temperature photoluminescence at 3.74 eV (331 nm) and at 2.71 eV (458 nm), respectively. The blue-absorption and emission in the thin films are ascribed to the fact that fluorine atoms on the vinylene units prevent π-stacking of polymeric chains. Furthermore, the dependence of morphology, anisotropy in optical properties and photoluminescence properties of films on deposition methodology is also discussed. MEH-PPDFV also emits homogeneous blue-greenish electroluminescence at 2.46 eV (504 nm).  相似文献   

13.
Aytug Ava  Canan  Ocak  Yusuf Selim  Celik  Omer  Asubay  Sezai 《SILICON》2023,15(1):451-458
Silicon - The influence of the Si substitution ratio on the structural, morphological, and optical properties of Cu2ZnSnS4 (CZTS) thin films was examined. The Cu2Zn(SixSn1–x)S4 thin films...  相似文献   

14.
TiO2 thin films doped with ≤7 mol% Mn (metal basis) were deposited on F-doped SnO2-coated (FTO) glass substrates by spin coating. The structural, morphological, and optical properties of the films were investigated by glancing angle X-ray diffraction (GAXRD), laser Raman microspectroscopy, field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectroscopy (UV–VIS). Mn doping of TiO2 (anatase) extended the optical absorption edge to longer wavelengths (lower photon energies) significantly lowering the band gap from 3.32 eV (undoped) to 2.90 (7 mol% Mn). The absorption edges of all films were sharp and the transparencies in the visible region were in the range 60–75%. All of the films were homogeneous, fully dense, and essentially crack-free.  相似文献   

15.
We report the influence of boron doping concentration on the microstructure, electrical and optical properties of solution-processed zinc oxide (ZnO) thin films. The B doping concentration in the resultant solutions was varied from 0 to 5 at%, and the pH value of each synthetic solution was adjusted to 7.0. XRD measurements, SEM observations, and SPM examinations revealed that boron doping produced ZnO thin films consisting of a fine grain structure with a flat surface morphology. Moreover, ZnO thin films doped with B raised the texture coefficient along the (002) plane. All B-doped ZnO (ZnO:B) thin films exhibited higher transparency than that of the undoped ZnO thin film in the wavelengths between 350 and 650 nm. The optical band gap and Urbach energy of the ZnO:B thin films were higher than those of the undoped thin film. According to electrical transport characteristics, the 1% B-doped ZnO thin film exhibited the highest Hall mobility of 17.9 cm2/V s, the highest electron concentration of 1.2×1015 cm−3, and the lowest electrical resistivity of 2.2×102 Ω cm among all of the ZnO:B thin films.  相似文献   

16.
《Ceramics International》2023,49(4):5728-5737
Highly transparent and conductive pure (SnO2) and aluminum doped tin oxide (Al:SnO2) thin films were deposited on glass substrates by the sol-gel spin-coating method. The structural, morphological, optical and electrical properties of the prepared thin films at different doping rates have been studied. X-ray diffraction results revealed that all the films were polycrystalline in nature with a tetragonal rutile structure. SEM images of the analyzed films showed a homogeneous surface morphology, composed of nanocrystalline grains. The EDS results confirmed the presence of Sn and O elements in pure SnO2 and Sn, O, Al in doped SnO2 thin films. The optical results revealed a high transmittance greater than 85% in the visible and near infrared and a band gap varying between 3.82 and 3.89 eV. PL spectra at room temperature showed that the most dominant defects correspond to oxygen vacancies. A low resistivity of order varying between 10?3 and 10?4 Ω cm and a high figure of merits ranging between 10?3 and 10?2 Ω?1 in the visible range were obtained. The best performances were obtained for samples containing 2 at. % Al, which could be used as an alternative TCO layer for future optoelectronic devices.  相似文献   

17.
18.
ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail.  相似文献   

19.
Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (−0.1, −0.3, −0.5, −0.7, and −0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV–vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.  相似文献   

20.
2,6-Bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)pyridine (11a) and 1,3-bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)benzene (11b) have been shown to accelerate at 50 mmol·L−1 concentration both the cleavage and mutual isomerization of uridylyl-3′,5′-uridine and uridylyl-2′,5′-uridine by up to two orders of magnitude. The catalytically active ionic forms are the tri- (in the case of 11b) tetra- and pentacations. The pyridine nitrogen is not critical for efficient catalysis, since the activity of 11b is even slightly higher than that of 11a. On the other hand, protonation of the pyridine nitrogen still makes 11a approximately four times more efficient as a catalyst, but only for the cleavage reaction. Interestingly, the respective reactions of adenylyl-3′,5′-adenosine were not accelerated, suggesting that the catalysis is base moiety selective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号