首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aluminum matrix hybrid composite reinforced with tungsten oxide particles (WO3p) and aluminum borate whiskers (ABOw), which have great specific gravity difference was fabricated by squeeze casting. The hybrid composite was observed by scanning electron microscope (SEM). The ultimate tensile strength, yield strength and elastic modulus of the hybrid composite are higher than those of matrix, but the elongation of the hybrid composite is relatively low. On the fractured surfaces of the composite the WO3p fractured and ABOw debonded from the matrix. The bonding strength of interface between reinforcements and matrix was found to be very weak comparatively.  相似文献   

2.
Multi-wall carbon nanotubes (MWNTs) have been considered a realistic kind of reinforcement for composite materials. In this paper, microstructure and mechanical properties of the aluminum borate whisker (ABOw) and MWNTs hybrid composites were investigated. The results show that MWNTs decrease the compressive deformation of the hybrid preforms and are kept intact in the matrix during squeeze cast processing. A small amount of MWNTs may effectively improve the modulus, strength and elongation of the hybrid composite. Decreasing micropores and strengthening the matrix, high strength MWNTs make the mechanical properties of the hybrid composite superior to the singularly reinforced ones. This makes MWNTs a promising material for novel micro/nanohybrid composite.  相似文献   

3.
Aluminu–matrix composites produced by Ni3Al intermetallic particles are increasingly used in aerospace and structural applications because of their outstanding properties. In manufacturing of metal–matrix composites using powder metallurgy blending and milling are important factors. They control the final distribution of reinforcement particles and porosity in green compacts which in turn, strongly affect the mechanical properties of the produced PM materials. This paper studies different conditions for producing composite powders with uniform dispersion of Ni3Al particles in aluminum powders and improved physical and mechanical properties. The results indicated that an intermediate milling time for fabrication of composite powder, better than prolonged and shortened ones, causes better microstructure and properties. It was shown that addition of 5 vol.% Ni3Al particles, produced by 15 h mechanical alloying to aluminum powders, and then 12 h blending operation provides an appropriate condition for producing Al–Ni3Al composite powder.  相似文献   

4.
Microwave processing and substitutional-combustion reaction have been utilized to fabricate ceramic matrix porous composite from the thermite reaction of Fe3O4/Al system. Stoichiometric and mixtures with lower and over aluminum were tested. As this system was highly exothermic, the melting of reaction products and destruction the porous structure may occur. In order to avoid that, reaction coupled with a smaller driving force by controlling the microwave (MW) ignition condition at low temperature exotherm, where substitutional reaction occurs has been investigated. The phase and microstructure evolution during the reaction is analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermogram of the DTA analysis, irrespective of their mole ratio, recorded two exothermic peaks, one at ~1310 °C and another one at ~1370 °C. Fe and α-Al2O3 were the main products for the combusted mixture. Hercynite appeared as the major phase in the stoichiometric and slightly lower Al content mixtures due to incompleteness of reaction. In contrary, over aluminized mixture revealed the presence of Al3.2Fe. When heated at 1360 °C, an additional FeO phase was observed. Mixtures with extremely low Al content showed the presence of unreacted Fe3O4 and some free Al due to the decrease of combustion velocity associated with a decrease in the sample exothermicities. Sample heated in electric furnace was dense. When heating by microwave, controlling the reaction progress at low temperature exotherm allowed the achievement of porous structure composite consisting of micron size iron particles well distributed and embedded in the hercynite and/or Al2O3 matrix.  相似文献   

5.
《Materials Letters》2004,58(27-28):3545-3550
Pure aluminum matrix composite reinforced with a high volume fraction of silicon particles (Al/Sip) was fabricated by gas-pressured infiltration. The results of four point flexural strength tests show that Al/Sip has low flexural strength. The analysis of the fractograph reveals the fracture mechanism of Al/Sip. The fracture of Al/Sip is primarily dominated by the fracture of brittle silicon particles and the subsequent link up of damage through the matrix. The pre-existent microcracks in silicon particles that were made during the process of compacting will also lower the flexural strength of Al/Sip composite. The hybrid particle reinforced pure aluminum matrix composite (Al/Sip+SiCp) was fabricated in the same way. Results show the flexural strength can be improved by 11.3% compared with Al/Sip when 6 vol.% silicon particles are replaced by silicon carbide particles with the same volume fraction and size. The reason is that SiCp with higher fracture stress and higher elastic modulus can prevent the rapid expansion of cracks through the composite and lower the stress in silicon particles.  相似文献   

6.
Some important problems associated with cast metal matrix composites (MMCs) include non-uniformity of the reinforcement particles, high porosity content, and weak bonding between reinforcement and matrix, which collectively result in low mechanical properties. Accumulative roll bonding (ARB) process was used in this study as a very effective method for refinement of microstructure and improvement of mechanical properties of the cast Al/10 vol.% Al2O3 composite. The average particle size of the Al2O3 was 3 μm. The results revealed that the microstructure of the composite after eleven cycles of the ARB had an excellent distribution of alumina particles in the aluminum matrix without any noticeable porosity. The results also indicated that the tensile strength and elongation of the composites increased as the number of ARB cycles increased. After eleven ARB cycles tensile strength and elongation values reached 158.1 MPa and 7.8%, which were 2.54 and 2.36 times greater than those of the as-cast MMC, respectively.  相似文献   

7.
Wei Weng  Naiheng Ma 《Materials Letters》2010,64(15):1657-1659
A new type of piezo-damping aluminum matrix composite containing ZnO:Al-coated LiNbO3 particles was prepared. The dependence of the damping properties of composites on the resistivity of ZnO:Al coatings, altered by Al doping concentration, was investigated. Dynamic mechanical thermal analysis revealed that decreasing the resistivity of ZnO:Al coatings causes the loss factors of the composites to initially increase until the maximum value, before rapidly decreasing. Based on this piezo-damping material, the LiNbO3 particles contribute to the transformation of mechanical vibration energy into electric energy, which is then converted into Joule's heat in the networks within the ZnO:Al coatings and metal matrix. An optimum formulation for piezo-damping metal matrix composites can be designed based on the results of this study.  相似文献   

8.
The corrosion protection from sulfuric acid anodized coatings on 2024 aluminum and SiC particle reinforced 2024 aluminum metal matrix composite (SiCp/2024Al MMC) in 3.5 wt.% NaCl aqueous solution was investigated using electrochemical methods. The results show that the anodized coating on 2024Al provides good corrosion protection to 3.5 wt.% NaCl, and the anodized coating on the SiCp/2024Al MMC provides some corrosion protection, but it is not as effective as for 2024Al because non-uniformity in thickness and cavities present are associated with the SiC particulates. Cavities above SiC particles are the reason that the anodized coating on the MMC cannot be completely sealed by hot water as with anodic Al alloy. SiC particle anodizes at a significantly reduced rate compared with the adjacent Al matrix. This gives rise to alumina film encroachment beneath the particle and occlusion of the partly anodized particle in the coating. It was found that the barrier layer of anodized Al MMC is not continuous, and it is composed primarily of the barrier layer of anodized Al matrix and a barrier-type SiO2 film on occluded SiC particles in the coating. A new formation mechanism of coating growth during anodizing of a SiCp/2024Al MMC was proposed.  相似文献   

9.
WCp/2024Al复合材料是一种具有良好力学性能和辐射屏蔽性能的新型铝基复合材料。目前缺乏对其进行塑性加工的研究,因此采用热模拟实验机研究了WCp/2024Al复合材料在623K~773K,应变速率为0.01、0.1和1s-1下的热变形行为。结果显示,复合材料的流变应力随变形温度的升高、应变速率的降低而降低。在较高的应变速率下复合材料的变形机制为动态回复,而在较低的应变速率下为动态再结晶和动态回复。采用Power-Arrhenius型速率方程计算了复合材料的应变速率敏感系数m和热变形激活能Q。结果显示随着温度的升高,复合材料的m值升高而Q值降低,说明升高温度有利于复合材料的高温塑性变形。  相似文献   

10.
纳米Al2O3增强铝基复合材料的制备技术和发展方向   总被引:2,自引:2,他引:0  
纳米颗粒具有极高的增强效率,能够显著提高铝基复合材料的综合性能.纳米Al2 O3/Al复合材料作为其中的代表,具有高弹性模量、高强度和低密度等优势,得到长期的关注和研究.详细介绍了纳米Al2O3/Al复合材料的制备方法,分析了各制备方法的优点和缺点,并对纳米Al2O3/Al复合材料的发展前景进行了展望.  相似文献   

11.
李玄  赵科  刘金铃 《复合材料学报》2023,40(2):1118-1128
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。  相似文献   

12.
In this investigation, a new kind of metal matrix composites with a matrix of pure aluminum and hybrid reinforcement of Al2O3 and SiC particles was fabricated for the first time by anodizing followed by eight cycles accumulative roll bonding (ARB). The resulting microstructures and the corresponding mechanical properties of composites within different stages of ARB process were studied. It was found that with increasing the ARB cycles, alumina layers were fractured, resulting in homogenous distribution of Al2O3 particles in the aluminum matrix. Also, the distribution of SiC particles was improved and the porosity between particles and the matrix was decreased. It was observed that the tensile strength of composites improved by increasing the ARB passes, i.e. the tensile strength of the Al/1.6 vol.% Al2O3/1 vol.% SiC composite was measured to be about 3.1 times higher than as-received material. In addition, tensile strength of composites decreased by increasing volume fraction of SiC particles to more than 1 vol.%. Scanning electron microscopy (SEM) observation of fractured surfaces showed that the failure mechanism of broken hybrid composite was shear ductile rupture.  相似文献   

13.
To study the possibility of utilizing piezoelectric effect, damping properties of poly- and single-domain LiNbO3 particle-filled pure aluminum composites were investigated by a dynamic mechanical thermal analyzer. The damping capacity of single-domain LiNbO3/Al composite is always higher than that of poly-domain LiNbO3/Al composite over the whole testing temperature range from 30 to 300 °C. At room temperature the single-domain LiNbO3/Al composite shows twice the damping capacity of the poly-domain LiNbO3/Al composite. Domain structures were observed by an optical microscope. Effect of the domain structure on the properties of LiNbO3 single crystal was studied based on the measurements of d33 piezoelectric constant, damping capacity and coefficient of thermal expansion (CTE). Then effect of the domain structure on the damping properties of the composites was investigated. The difference of the damping capacity between poly- and single-domain LiNbO3/Al composites is mainly attributed to the piezoelectric effect.  相似文献   

14.
为了研究多重结构对铝基复合材料力学性能的影响,将气雾化态Al2024合金粉末与球磨不同时间的Ti-10%(质量分数,下同)B_4C复合粉末混合,采用热压烧结和热挤压的方法制备多重结构Ti-B_4C/Al2024复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和拉伸试验机对不同材料的显微组织与力学性能进行观察和测试,并对多重结构复合材料的强韧化行为进行讨论。结果表明:Ti-B_4C/Al2024复合材料多重结构包括基体Al2024、核壳结构Ti/Al18Ti_2Mg_3组织和B_4C颗粒。向Al2024中加入5%预先球磨6h后的Ti-B_4C粉末时,其屈服强度从107MPa提高到122MPa,并且表现出与热挤压Al2024合金几乎相同的伸长率。当球磨时间延长至12h时,试样5TB-12h的伸长率可达到16.4%。然而,复合材料的伸长率随着Ti-B_4C添加量的增加而降低。  相似文献   

15.
A novel in situ Al12W particles reinforced aluminum matrix composite was synthesized by reaction sintering of tungsten and aluminum powders and followed by hot extrusion. The microstructures were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tensile tests of composite and pure aluminum materials were measured. The XRD analysis identifies that the in situ Al12W particles are formed by the reaction between tungsten and aluminum powders. Meanwhile, SEM observation shows that the Al12W particles are distributed uniformly in the Al matrix, and TEM observation shows that the interfacial condition of Al12W particles and Al is good. It is found from the tensile tests that the in situ synthesized Al12W particles can significantly enhance the strength of the composite in spite of decreasing elongation. The fracture morphology analysis reveals that the fracture mode of composite is ductile fracture.  相似文献   

16.
ZnO-coated aluminum borate whiskers reinforced 2024Al composite was fabricated by squeeze casting. Interfacial microstructures and tensile properties of the composite in as-cast and after thermal exposure were investigated. Fracture mechanisms of the composite in as-cast and after thermal exposure were also investigated. The results show that ZnO coating of the whiskers reacts with molten 2024Al and MgAl2O4 forms at the interface during squeeze casting. On the one hand, the interfacial reaction between ZnO and 2024Al can improve the wettability of the whiskers by molten 2024Al, increasing the tensile properties of as-cast composite. On the other hand, during thermal exposure, MgAl2O4 at the interface can effectively hinder serious interfacial reactions between the whiskers and magnesium in the matrix of 2024Al, improving the thermal stability of the composite at high temperatures.  相似文献   

17.
The distribution of reinforcement particles in the matrix of a composite is one of the most important microstructural features affecting properties. In this study, nanostructured Al–B4C composite sheets were processed by accumulative roll bonding (ARB), and the effect of the number of ARB cycles on the distribution of the B4C particles in the Al matrix was evaluated. From optical microscopic studies accompanied by the radial distribution function analysis, it was realized that the microstructure uniformity is improved by increasing the number of ARB cycles. It was in good agreement with bulk hardness measurements in which the standard deviation of the hardness values was decreased by progression of the ARB process. In addition, the X-ray diffraction peak profile analysis revealed that the area weighted mean crystallite size of the Al matrix decreases to the nanometric scale (114 nm) after seven ARB cycles.  相似文献   

18.
In this study, mechanically alloyed Al–12Si/SiO2 composite powder was deposited onto an aluminum substrate by atmospheric plasma spraying. The composite coating consisting of in situ formed Al2O3 reinforced hypereutectic Al–18Si matrix alloy was achieved. The produced coatings were extensively analyzed with respect to X-ray diffraction (XRD). The XRD patterns of the coatings include Al, Si and Al2O3 phase formation. Mechanical properties of layers were examined by Dynamic Ultra-micro hardness test machine for estimating Young’s modulus due to load–unload sensing analysis. The hardness and Young’s modulus of the composite coatings sprayed at different plasma current and the distance were measured under 200, 400, 600, 800 and 1000 mN of applied peak loads by indentation technique. The effects of spray distance and arc current on the hardness and Young’s modulus have been investigated. Additionally, it was observed that the arc current and spray distance strongly influence the mechanical properties of the coatings.  相似文献   

19.
The 6061 aluminum matrix composite reinforced with SnO2-coated Al18B4O33 whisker was fabricated by squeeze casting and following by extrusion extruded at elevated temperatures from 300 °C to 400 °C. Optimization of the extruding process, microstructure, texture and mechanical properties of the extruded composites were investigated. The lowest extrusion temperature at which a composite rod with high surface quality was successfully produced was 300 °C. The yield strength of composites is much improved after extrusion, and especially their elongation is increased by 300%. Such big improvements depend on a fact that SnO2 coating can introduce low-melting-point Sn phase into the interface through an interfacial reaction. The melting of interphase and their surrounding areas is the main reason for the excellent extrusion ability of the composite. Besides, detailed X-ray diffraction analysis of the extruded composite textures reveals the significant effects of extrusion temperatures on their features.  相似文献   

20.
《Advanced Powder Technology》2021,32(10):3635-3649
Al matrix composites have attracted significant attention of researchers in recent years due to their lightweight, excellent mechanical and tribological properties. In this study, an Al2024 matrix hybrid composite (AMHC) reinforced with both TiC nanoparticles and graphene nanoplatelets (GNPs) was produced via a route of powder metallurgy. And its microstructure, microhardness and tribological properties are compared with those of unreinforced Al2024 alloy matrix and Al2024 matrix composites reinforced with either only TiC or GNPs. It was found that the distribution of Al2Cu, TiC nanoparticles and GNPs in the matrix and the wear resistance are significantly improved when introducing both TiC nanoparticles and the GNPs. The wear mechanisms change from the adhesion-dominant wear for Al2024 and the other singly reinforced composites into abrasive-dominant wear for the hybrid composite. The significantly improved wear resistance of the AMHC is attributed to the synergistic effects of reinforcing and self-lubricating of the TiC and GNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号