首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
强制对流传热的换热表面结垢特性实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
An experimental study was conducted to investigate the fouling process of calcium carbonate on the heat transfer surface, during forced convective heat transfer. The dynamic monitoring apparatus of fouling resistance was set up for the present experiments. The fouling behavio(s were examined under different factors including fluid velocity, hardness,alkalinity, solution temperature, and wall temperature. Asymptotic fouling curves varying with time were obtained. The fouling rate and asymptotic fouling resistance increased and the induction periods were shortened with the fluid velocity decreasing, hardness andalkalinity increasing, and solution temperature and heat transfer surface temperature increasing. Thecomponents of fouling that formed on the heat transfer surface included crystallization fouling and particulate fouling. The thermal performance parameter of fouling,ρfhf, varied from 380 to 2600 kg·W·(m^4·K)^-1, increasing with growing velocity and decreasing solution temperature, hardness or alkalinity. Furthermore, the thermal conductivity of fouling, λf, varied from 1.7 to 2.2 W·(m·K)^-1 .  相似文献   

2.
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic (CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than 0.15 m·s?1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s?1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventual y evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.  相似文献   

3.
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride)(PVDF)membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34-43 L·m~(-2)·h~(-1),respectively. The critical flux and fouling resistances indicated that the fouling propensity increases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious irreversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of40.5 L·m~(-2)·h~(-1).On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling performance when permeate flux was set to 40.5,48 and 60 L·m~(-2)·h~(-1).  相似文献   

4.
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation.  相似文献   

5.
Fouling of heat transfer surfaces during subcooled flow boiling is a frequent engineering problem in process industries. It has been generally observed that the deposits in such industrial systems consist mainly of calcium carbonate (CaCO3), which has inverse solubility characteristics. This investigation focused on the mechanism to control deposition and the morphology of crystalline deposits. A series of experiments were carried out at different surface and bulk temperatures, fluid velocities and salt ion concentrations. It is shown that the deposition rate is controlled by different mechanism in the range of experimental parameters, depending on salt ion concentration. At higher ion concentration, the fouling rate increases linearly with surface temperature and the effect of flow velocity on deposition rate is quite strong, suggesting that mass diffusion controls the fouling process. On the contrary, at lower ion concentration, the fouling rate increases exponentially with surface temperature and is independent of the velocity, illustrating that surface reaction controls the fouling process. By analysis of the morphology of scale, two types of crystal (calcite and aragonite) are formed. The lower the temperature and ion concentration, the longer the induction period and the higher the percentage of calcite nreciDitated.  相似文献   

6.
Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor. The effects of Ca(OH)2 concentration, CO2 pressure and liquid flow velocity on the particles morphology, pressure drop and membrane fouling were studied. With rising Ca(OH)2 concentrations, the average size of the particles increased. The effects of Ca(OH)2 concentration and CO2 pressure on particles were not apparent under the experimental conditions. When the Ca(OH)2 concentration and liquid flow velocity were high, or the CO2 pressure was low, the fouling on the membrane external surface at the contactor entrance was serious due to liquid leakage, whereas the fouling was slight at exit. The fouling on the membrane inner-surface at entrance was apparent due to adsorption of raw materials. The membrane can be recovered by washing with dilute hydrochloric acid and reused for at least 6 times without performance deterioration.  相似文献   

7.
A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m~(-1) · K~(-1), the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m~(-1) · K~(-1), the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.  相似文献   

8.
Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.  相似文献   

9.
The interaction of bubbles is the key to understand gas–liquid bubbling flow. Two-dimensional axis-symmetry computational fluid dynamics simulations on the interactive bubbles were performed with VOF method,which was validated by experimental work. It is testified that several different bubble interactive behaviors could be acquired under different conditions. Firstly, for large bubbles(d: 4, 6, 8, 10 mm), the trailing bubble rising velocity and aspect ratio have negative correlations with liquid viscosity and surface tension. The influences of viscosity and surface tension on leading bubble are negligible. Secondly, for smaller bubbles(d: 1, 2 mm), the results are complicated. The two bubbles tend to move together due to the attractive force by the wake and the potential repulsive force. Especially for high viscous or high surface tension liquid, the bubble pairs undergo several times acceleration and deceleration. In addition, bubble deformation plays an important role during bubble interaction which cannot be neglected.  相似文献   

10.
As fouling has always been a major drawback of membrane technology, qualitative and quantitative understanding of membrane fouling mechanisms therefore becomes vital in order to help push membrane separation technologies forward. In this study, firstly, self-cleaning Polysulfone(PSf) membranes were synthesized by incorporation of WO_3nanoparticles(0–2 wt%) and subsequent UV irradiation for efficient ultrafiltration(UF)of landfill leachate and dairy wastewater. The membrane surface properties were characterized by scanning electron microscopy(SEM) and contact angle analysis. It was found that UV-irradiated membranes exhibited higher percent COD removals due to the hydrophilicity and photocatalytic properties of nano-WO_3. Subsequently, in order to analyze the fouling behavior of the membranes, a set of experimental data from cross-flow ultrafiltration of municipal landfill leachate and industrial dairy wastewater at 25 °C was obtained. A new model of membrane fouling was proposed based on a resistance in series concept and was fitted well with all experimental data sets.Almost all relative errors of prediction provided by the proposed model were less than 2.5%. In addition, it was revealed that this newly-developed model exhibited smooth transition between the common successive twostep pore blockage-cake filtration phenomena and thus eliminates the need to use separate equations for different mechanisms.  相似文献   

11.
A study was carried out to evaluate the treatment efficiency of modified model of septic tank(ST)for the treatment of domestic wastewater.The objective was to explore the possibility of increasing the removal efficiency,at household level,thereby reducing cost and treatment burden on city level treatment plants.For this purpose,a bench scale model of ST was prepared and operated continuously for 78 days at different detention times i.e.,48,24 and 12 h and at two reactor temperatures viz.15°C and 25°C.Domestic wastewater was fed to the bench scale ST without pre-settling.Research was conducted under two different arrangements.Firstly,by installing baffles in the bench scale ST(called Run-1 setup),and secondly by installing perforated plates between the baffles(called Run-2 setup).Results demonstrated that Run-2 setup is better than Run-1 setup.Temperature significantly affects the efficiency.Detention time of 24 h was found feasible.Run-2 setup demonstrated a percentage BOD removal of 45%with effluent BOD of 113 mg·L~(-1)at 15°C and 85%removal with effluent BOD of 31 mg·L~(-1)at 25°C.It is concluded that if a modified design of ST using Run-2 setup is provided at household level,the effluent coming out of the house will meet the National Environmental Quality Standards(NEQS)when reactor temperature is close to 25°C.Development authorities are suggested to change their by-laws and make modified ST mandatory for all households.This may significantly reduce the cost and footprint of city level wastewater treatment plants being planned.  相似文献   

12.
Compared with gas-liquid two-phase flow,oil-gas-water three-phase flow is much more complex. There is immiscible oil-water,whose interaction and dispersion greatly affects the flow characteristics. The slug flow pattern of oil-gas-water three-phase and its flow pattern transition were studied in a 95 m long,51 mm i. d. horizontal pipe. The oil-gas-water three-phase slug flow pattern could be classified into five sub-flow patterns. The slug flow was W/O or O/W one during its transition to roll wave,which was three-layer flow pattern without mixed-phase on the interface. An even larger superficial gas velocity was needed for the transition boundary of slug flow and roll wave flow when the superficial liquid velocity is large. Besides,the region of roll wave flow pattern became smaller. The above-mentioned transition only happened when the water cut of liquid was between 30% and 70%. At the same superficial liquid velocity,there appeared a minimum superficial gas velocity corresponding to the transition of flow pattern when the water cut of liquid was between 40% and 50%.  相似文献   

13.
A simple harmonic motion is proposed to make the membrane move in a simple harmonic way so as to enhance the membrane filtration, and minimize the membrane fouling and concentration polarization. The velocity distribution and pressure distribution are deduced from the Navier-Stokes equation on the basis of a laminar flow when the membrane rotates at the speed of A sin(αt). And then the shear stress, shear force, moment of force on the membrane surface and power consumed by viscous force are calculated. The velocity distribution demonstrates that the phase of membrane velocity does not synchronize with that of shear stress. The simple harmonic motion can result in self-cleaning, optimize energy utilization, provide the velocity field with instability, and make the feed fluid fluctuation. It also results in higher shear stress on the membrane surface than the constant motion when they consume the same quantitative energy.  相似文献   

14.
A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated. A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation. The validity of the numerical method is verified by a benchmark problem. The melt interface evolution versus time is captured and the physical quantities such as temperature, velocity and pressure at each time step are obtained with corresponding analysis. A “frozen skin” layer with the thickness increasing versus time during the injection process is found. The fact that the “frozen skin” layer can be reduced by increasing the injection velocity is numerically verified. The fountain flow phenomenon near the melt interface is also captured. Moreover, comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure con-tours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case. The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case, while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.  相似文献   

15.
For non-catalytic gas-solid reaction, it is desirable to match the mean residence time(MRT) of particles and complete conversion time(t_c) in a fluidized bed. In this study, the MRT differences(MRT ratios) between the coarse particles and the fine particles were investigated in a continuous fluidized bed with a side exit by varying the superficial gas velocity, feed composition and particle size ratio. The results show that the MRT ratio increases firstly and then decreases with increasing the gas velocity. By controlling the gas velocity and the feed composition of coarse particles, the MRT ratio can be modulated from 1.8 to 10.5 at the gas velocity of 1.0 m·s~(-1) for the binary mixture with the size ratio of 2.2. The MRT ratio can reach to ~ 12 at the gas velocity of 1.2 m·s~(-1)for the particle size ratio of 3.3. The present study has endeavored to obtain fundamental data for an effective plant operation to meet the need of synchronously complete conversion of particles with different sizes during the film diffusion controlling reaction.  相似文献   

16.
水平气液混输管道清管操作实验与数值模拟技术   总被引:1,自引:1,他引:0  
李玉星  冯叔初 《化工学报》2004,55(2):271-274
A pigging model incorporating three different regions was developed for predicting the dynamics of the pigging operation in two-phase flow pipelines. The model incorporates a transient two-fluid model. The mixed Eulerean-Lagrangian approach was used to couple the transient model and the pigging model which can predict the pigging time, velocity and the change of pigging parameters. An experimental study was carried out to acquire two-phase transient flow and pigging data on a 380 m long, 81 mm diameter horizontal pipeline. A computer-based data acquisition system was used to obtain detailed information of the flow behavior during experimental runs. The data include pigging time, inlet pressure, accumulated liquid in pipeline, pressure and pigging velocity distribution. The predicted results compared fairy well with the experimental data.  相似文献   

17.
For the design and optimization of a tubular gas–liquid atomization mixer,the atomization and mixing characteristics of liquid jet breakup in the limited tube space is a key problem.In this study,the primary breakup process of liquid jet column was analyzed by high-speed camera,then the droplet size and velocity distribution of atomized droplets were measured by Phase-Doppler anemometry (PDA).The hydrodynamic characteristics of gas flow in tubular gas–liquid atomization mixer were analyzed by computational fluid dynamics (CFD) numerical simulation.The results indicate that the liquid flow rate has little effect on the atomization droplet size and atomization pressure drop,and the gas flow rate is the main influence parameter.Under all experimental gas flow conditions,the liquid jet column undergoes a primary breakup process,forming larger liquid blocks and droplets.When the gas flow rate (Q_g) is less than 127 m~3·h~(-1),the secondary breakup of large liquid blocks and droplets does not occur in venturi throat region.The Sauter mean diameter (SMD) of droplets measured at the outlet is more than 140μm,and the distribution is uneven.When Q_g127 m~3·h~(-1),the large liquid blocks and droplets have secondary breakup process at the throat region.The SMD of droplets measured at the outlet is less than 140μm,and the distribution is uniform.When 127Q_g162 m~3·h~(-1),the secondary breakup mode of droplets is bag breakup or pouch breakup.When 181Q_g216 m~3·h~(-1),the secondary breakup mode of droplets is shear breakup or catastrophic breakup.In order to ensure efficient atomization and mixing,the throat gas velocity of the tubular atomization mixer should be designed to be about 51 m·s~(-1)under the lowest operating flow rate.The pressure drop of the tubular atomization mixer increases linearly with the square of gas velocity,and the resistance coefficient is about 2.55 in single-phase flow condition and 2.73 in gas–liquid atomization condition.  相似文献   

18.
The absorption process in acrylic acid production was water-intensive. The concentration of acrylic acid before distillation process was low, which induced to large amount of wastewater and enormous energy consumption.In this work, a new method was proposed to concentrate the side stream of absorption column and thus increase the concentration in bottom product by electrodialysis. The influence of operating conditions on concentration rate and specific energy consumption were investigated by a laboratory-scale device. When the voltage drop was 1 V·cP~(-1)(1 cP=10~(-3) Pa·s), flow velocity was 3 cm·s~(-1) and the temperature was 35 °C, the concentration rates of acrylic acid and acetic acid could be 203.3% and 156.6% in the continual-ED process. Based on the experimental data, the absorption process combined with ED was simulated, in which the diluted solution from ED process was used as spray water and the concentrated solution was feed back to the absorption column. The results shown that the flow rate of spray water was decreased by 37.1%, and the acrylic acid concentration at the bottom of the tower was increased by 4.56%. The ions exchange membranes before and after use 1200 h were tested by membrane surface morphology(scanning electron microscope), membrane chemical groups(infrared spectra), ion exchange capacity, and membrane area resistance, which indicated the membrane were stable in the acid system. This method provides new method for energy conservation and emission reduction in the traditional chemical industry.  相似文献   

19.
Rotating packed bed has high efficiency of gas–liquid mass transfer. So it is significant to investigate fluid motion in rotating packed bed. Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper. The particle image velocimetry is compared with the numerical simulations to validate the turbulent model. Results show that the liquid exists in the packing zone in the form of droplet and liquid line, and the cavity is droplet. When the radial thickness of the packing is less than 0.101 m, liquid line and droplets appear in the cavity. When rotational speed and radial thickness of the packing increase, the average diameter of the droplets becomes smaller, and the droplet size distribution becomes uniform. As the initial velocity of the liquid increases, the average droplet diameter increases and the uniformity of particle size distribution become worse. The droplet velocity increases with the radial thickness of the packing increasing, and gradually decreases when it reaches the cavity region. The effect of packing thickness is most substantial through linear fitting. The predicted and simulated values are within ±15%. The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution.  相似文献   

20.
Fouling Induction Period of CaCO3 on Heated Surface   总被引:3,自引:0,他引:3       下载免费PDF全文
Fouling inductinn period of CaCO3 on heated surface was studied with the micro video technology. The rates of nucleating and nuclei growlng were measured under various experlmen-tal conditions. The experimental results showed that both nucleating and nudel growing rates of CaCO3 increased obviously with surface temperature and concentration of reagents, In addition, the experiment of fouling induction period on the surface material of chemical plated nickel-phosphorus-indicated thnt not only the nucleate rate of CaCO3 decreased but also some fouling particles with certain size were easy to peel off from the heated surface under shearing streas, which means that the property of surface material is one of the rnont important factors influencing fouling induction periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号