首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the molecular weight of poly(D ‐lactic acid) (PDLA), which forms stereocomplex (SC) crystallites with poly(L ‐lactic acid) (PLLA), and those of processing temperature Tp on the acceleration (or nucleation) of PLLA homocrystallization were investigated using PLLA films containing 10 wt% PDLA with number‐average molecular weight (Mn) values of 5.47 × 105, 9.67 × 104 and 3.67 × 104 g mol–1 (PDLA‐H, PDLA‐M and PDLA‐L, respectively). For the PLLA/PDLA‐H and PLLA/PDLA‐M films, the SC crystallites that were ‘non’‐melted and those that were ‘completely’ melted at Tp values just above their endset melting temperature and recrystallized during cooling were found to act as effective accelerating (or nucleation) agents for PLLA homocrystallization. In contrast, SC crystallites formed from PDLA‐L, having the lowest Mn, were effective accelerating agents without any restrictions on Tp. In this case, the accelerating effects can be attributed to the plasticizer effect of PDLA‐L with the lowest Mn. The accelerating effects of SC crystallites in the PLLA/PDLA‐H and PLLA/PDLA‐M films was dependent on crystalline thickness for Tp values below the melting peak temperature of SC crystallites, whereas for Tp values above the melting peak temperature the accelerating effects are suggested to be affected by the interaction between the SC crystalline regions and PLLA amorphous regions.  相似文献   

2.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
When incorporating actinides into zirconolite for high-level radioactive waste immobilization, Al3+ and Fe3+ ions generally act as charge compensators. In this study, we rationally designed a series of (Ln = La, Nd, Gd, Ho, Yb) to unravel the dopant solubility and evolutions of the crystalline phase and local environment of cations through synchrotron X-ray methods. It was found that single zirconolite phase is difficult to obtain and the fraction of perovskite have an increase with x from 0.1 to 0.9 in . Formation of both zirconolite-2M and zirconolite-3O phases was observed in and . Phase transformation from zirconolite-2M to 3O occurs at x = 0.7 for while x = 0.9 for . The solubility of and to form single zirconolite-2M can reach to 0.9 f.u. and 0.7 f.u., respectively. The evolution of lattice parameters of zirconolite in is greatly related to the ionic radii of cations and substitution mechanism among the cations. X-ray absorption near edge spectroscopy revealed that Fe3+ ions replace both five- and six-coordinated Ti sites and the ratio of TiO5 to TiO6 decreases when increasing dopant concentration in the . For the local environment of Zr4+, the major form is ZrO7 with a trace of ZrO8.  相似文献   

4.
Poly(N‐methylaniline) (PNMA) is one of the polyaniline derivatives with N‐substituted position. Polyaniline derivatives have attracted attention due to their higher solubility in common solvents than pristine polyaniline, but they still possess lower electrical conductivity. In this work, PNMA was synthesized via chemical oxidative polymerization in an ethanol–water system. The effect of surfactant type, namely anionic sodium dodecylbenzenesulfonate (SDBS), cationic cetyltrimethylammonium bromide and non‐ionic Tween20, on the electrical conductivity, doping level and morphology was investigated. PNMA prepared with the SDBS system possessed the highest electrical conductivity among the obtained PNMAs with and without surfactants. The effect of N HClO 4 /NNMA dopant mole ratios on the re‐doping, crystallinity, morphology and particle size was also examined. Using an N HClO 4 /NNMA mole ratio of 10:1 in the re‐doping process provided the highest electrical conductivity of 15.53 ± 2.5 S cm?1, a doping level of 55.59%, along with hollow spherical particles with the thinnest membrane. Electron microscopy images revealed that the morphology of PNMA particles depended mainly on the surfactant type but not the N HClO 4 /NNMA mole ratio. © 2019 Society of Chemical Industry  相似文献   

5.
The temperature dependences of the electrical conductivity , Seebeck coefficient , and heat capacity Cp(T) of polycrystalline samples of Bi2Te3, Bi2Te3+1%CuI, and Bi2Te3+1%(CuI+1/2Pb) are investigated in the temperature range below room temperature. Based on the temperature dependences of all investigated physical properties, it is discovered that phase transition occurs at 120–200 K. Investigation of single crystals shows that anomalies in the electrical resistivity occur only across the crystal growth axis (across the well-conducting Bi–Te plane). Investigation of the low-temperature dependence of electrical conductivity shows that all polycrystalline samples exhibit quasi-two-dimensional electron transport. Additionally, quasi-two-dimensional transport is detected in single crystals based on anisotropy analysis (where is the resistivity along the crystal growth axis, and is resistivity across the crystal growth axis) and temperature dependence below 50 K. The Fermi energy is estimated using the temperature dependence of . It is discovered that an increase in at T > 200 K is associated with the phase transition. For single-crystal samples, the maximum thermoelectric figure of merit ZT, as observed along the crystal growth axis, increases with doping. A maximum ZT value of ∼1.1 is observed for the Bi2Te3+1%(CuI+1/2Pb) sample at room temperature ().  相似文献   

6.
The effects of varying concentrations of incorporated PDLA on the acceleration of PLLA homo‐crystallization due to stereocomplex (SC) crystallite formation are investigated in PLLA films doped with PDLA over the wide concentration range of 1–10 wt%. PLLA homo‐crystallization is accelerated for all the PDLA concentrations when the processing temperature Tp is just above the endset melting temperature of the SC crystallites (Tp = 226–238 °C), although the appropriate Tp range becomes narrow at low concentrations of PDLA. The accelerating effects of SC crystallites depend on the SC crystalline thickness and the interaction between the SC crystalline regions and PLLA amorphous regions for Tps below and above the melting peak temperature of the SC crystallites, respectively.

  相似文献   


7.
The dynamic adsorption isotherms of CO2-EGR were measured by using an Intelligent Gravimetric Analysis system. In the initial CO2 injecting stage, all the injected CO2 enters into the adsorbent and the mole fraction of CH4 in the gas phase () is maintained at 1.0. The CH4 recovery factor () increases. The duration of this stage (tCD) depends on the selectivity of CO2 over CH4 (). An adsorbent with large has long tCD. In the second stage, the injected CO2 competes with CH4 for adsorption. The cumulative of the second stage is much larger than that of the initial stage. However, decreases sharply. in the whole CO2 injection is always larger than that before CO2 injection, suggesting that CH4 desorption results from the displacement of CO2 rather than from pressure depletion.  相似文献   

8.
This paper describes the synthesis of the 2‐ and 4‐functional acrylic exo‐7‐oxanorbornene species 2‐((2‐((3aR,7aS)‐1,3‐dioxo‐1,3,3a,4,7,7a‐hexahydro‐2H‐4,7‐epoxyisoindol‐2‐yl)ethoxy) carbonyl)‐2‐methylpropane‐1,3‐diyl diacrylate and (((2‐((2‐((3aR,7aS)‐1,3‐dioxo‐1,3,3a,4,7,7a‐hexahydro‐2H‐4,7‐epoxyisoindol‐2‐yl)ethoxy) carbonyl)‐2‐methylpropane‐1,3‐diyl)bis(oxy))bis(carbonyl))bis(2‐methylpropane‐2,1,3‐triyl) tetraacrylate, and their use as common precursors for the preparation of a small library of dendronized thioether adducts via nucleophile‐mediated thiol‐Michael coupling chemistry. We subsequently demonstrate that the dendronized monomers can be (co)polymerized via ring‐opening metathesis polymerization employing Grubbs'‐type Ru‐based initiators to give novel functional dendronized (co)polymers of predictable molecular weights and acceptable dispersities (?M = w/ n). © 2013 Society of Chemical Industry  相似文献   

9.
In this reported study, (Bi0.5Na0.5)0.93Ba0.07Ti1+xO3 (abbreviated as BNBT1+x) ceramics, containing Ti-nonstoichiometry that ranged from a 2% deficiency to a 1% excess, were designed and systematically characterized. The results of the X-ray diffraction Rietveld refinement and X-ray photoelectron spectroscopy analysis of these materials revealed that the amount of Ti in the BNBT1+x ceramics significantly affected the degree of coexistent rhombohedral/tetragonal phases and also affected the content of singly/doubly charged oxygen-vacancy (/) in the ceramics. After poling and 105 fatigue cycles, the variation in Raman resonance line-width of the Ti–O bond in the BNBT1+x ceramics was found to be strongly dependent on the amount of Ti in the ceramic. The → transformation and clustering of the defects under electrical loading were considered to be a critical factor in electric field-induced structural transition and fatigue properties of the material.  相似文献   

10.
The planar oscillatory flow crystallizer (planar-OFC) was designed with a rectangular cross-section to improve the flow and suspension of solids of conventional OFCs. Residence time distribution experiments with liquid and solid tracers were performed to assess the effect of the net flow rate, Q , the frequency, f , and the amplitude of oscillation, x0 , on the axial dispersion of liquids, , and solids, , in three planar-OFCs with different geometries. It was found that Q and f have in general positive effects on and , and x0 has negative effects. Furthermore, identical values of and were obtained in each crystallizer. It was also found that the interaction between Q and x0 is the most significant one in all systems. These results show that the three crystallizers have similar axial dispersion performances with liquids and solids. This is of paramount importance for multiphase systems such as crystallization.  相似文献   

11.
The hydration of the two most reactive phases of ordinary Portland cement (OPC), tricalcium silicate (C3S), and tricalcium aluminate (C3A) is successfully halted when the activity of water () falls below critical thresholds of 0.70 and 0.45, respectively. It has been established that the reduction in relative humidity (RH) and  suppresses the hydration of all anhydrous phases in OPC, including less explored phases like dicalcium silicate, that is, belite (β-C2S). However, the degree of suppression, that is, the critical threshold, for β-C2S, standalone has yet to be established. This study utilizes isothermal microcalorimetry and X-ray diffraction techniques to elucidate the influence of on the hydration of -C2S suspensions via incremental replacements of water with isopropanol (IPA). Experimentally, this study shows that with increasing IPA replacements, hydration is increasingly suppressed until eventually brought to a halt at a critical threshold of approximately 27.7% IPA on a weight basis (wt.%IPA). From thermodynamic estimations, the exact critical threshold and solubility product constant of -C2S () are established as 0.913 and 10−12.68, respectively. This study enables enhanced understanding of β-C2S reactivity and provides thermodynamic parameters during the hydration of β-C2S-containing cementitious systems such as OPC-based and calcium aluminate-based systems.  相似文献   

12.
Effects of doping of Y and sintering atmosphere on the dielectric properties of Sr1-1.5xYxTiO3 ceramics (SYT, x = 0-0.014) were systematically investigated. The SYT14 (x = 0.014) ceramic sintered in N2 attains a colossal permittivity (CP, Ɛr = 28 084@ 1kHz, 27 685@ 2MHz) and an ultralow dielectric loss (tanδ = 0.007@ 1kHz, 0.003@ 2MHz) at room temperature. Because of using of the A-site deficient, there are in SYT ceramics. Through the comprehensive analysis of dielectric responses, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and complex impedance data, it is proved that doping of Y promotes the formation of (Y3+ are located at Sr2+ site), (Y3+ are located at Ti4+ site), and Ti3+, and sintering in reducing atmosphere of N2 results in more (oxygen vacancy) and (strontium vacancy) generating in SYT ceramics. The defect dipoles, , , , , , and formed by introduced defects make charge carriers localized in SYT ceramics. The combined action of the massive defect dipoles is responsible for the ultralow tanδ and CP in SYT14 ceramics sintered in N2.  相似文献   

13.
An unplasticized poly(vinyl chloride) (U-PVC) pipe sample used in infrastructure applications in Brazil (nominal diameter DN 100, outside diameter 110 mm) was evaluated according to different fracture mechanics methodologies, including essential work of fracture (EWF) and other fracture toughness parameters such as the stress intensity factor and plane strain energy release rate . This pipe sample was also tested for the quality of processing (degree of gelation) via differential scanning calorimetry (DSC) and tensile strength. The comparative evaluation of different specimen configurations—curved specimens in three-point bending (CTPB) and full rings in tension (SNRT), in thicknesses varying from 5 to 30 mm, showed initial evidence of the suitability of ring-type specimens for the evaluation of EWF and . Results also indicate that the full ring geometry, at least in the present experimental setup, presents some drawbacks probably due to the storage of large amounts of elastic energy throughout the test. This fact leads to relevant deviations in both load–displacement behavior and results for strain energy release rate (), and the results found here will guide future research using full and split rings in different loading modes and improved experimental setups. It was also confirmed that the value of , determined by a modified Charpy test, is independent of the type of specimen tested, as long as the test mode and specimen width are the same. Both the experimental value of and the estimated value for the plane strain stress intensity factor () showed excellent agreement with values reported for other U-PVC compositions.  相似文献   

14.
In this work, the influence of the sintering temperature on the physical properties of (Pb0.8La0.2)(Ti0.9Ni0.1)O3 (PLT-Ni) ceramics is reported. The experimental data revealed that the energy band gap of PLT-Ni ceramics could be tailored from approximately 2.7 to 2.0 eV by changing the sintering temperature from 1100°C to 1250°C. It is demonstrated that the simple substitution of Ti4+ by Ni2+ cations is effective to decrease the intrinsic band gap while increasing the tetragonality factor and the spontaneous polarization. However, the additional red-shift observed in the absorption edge of the PLT-Ni with increasing the sintering temperature was associated with a continuous increase in the oxygen vacancies () amount. It is believed that the impact of the creation of these thermally induced is manifold. The presence of and Ni2+ ions generate the Ni2+- defect-pairs that promoted both a decrease in the intrinsic band gap and an additional increase of the tetragonality factor, consequently, increasing the spontaneous polarization. The creation of Ni2+- defects also changed the local symmetry of Ni2+ ions from octahedral to a square pyramid, thus lifting the degeneracy of the Ni2+ 3d orbitals. With the increase in the sintering temperature, lower-energy absorbing intraband states were also formed due to an excess of , being responsible for an add-on shoulder in the absorption edge, extending the light absorption curve to longer wavelengths and leading to an additional absorption in “all investigated” spectrum as well.  相似文献   

15.
AgPb2B2V3O12 (B = Mg, Zn) ceramics with low sintering temperature were synthesized via the conventional solid-state reaction route. Rietveld refinements of the X-ray diffraction patterns confirm cubic symmetry with space group . The number of observed vibrational modes and those predicted by group theoretical calculations also confirm the space group. At the optimum sintering temperature of 750°C/4 hours, AgPb2Mg2V3O12 has a relative permittivity of 23.3 ± 0.2, unloaded quality factor () of 26 900 ± 500 GHz (), and temperature coefficient of resonant frequency of 19.3 ± 1 ppm/°C, while AgPb2Zn2V3O12 has the corresponding values of 26.4 ± 0.2, 28 400 ± 500 GHz () and –18.4 ± 1 ppm/°C at 590°C/4 hours. Microwave dielectric properties of a few reported garnets and Pb2AgB2V3O12 (B = Mg, Zn) ceramics were correlated with their intrinsic characteristics such as the Raman shifts as well as width of A1g Raman bands. Higher quality factor was obtained for lower full width at half-maxima (FWHMs) values of A1g modes. The increase in B-site bond valence contributes to high and low |τf| with the substitution of Zn2+ by Mg2+. Furthermore, the high ionic polarizability and unit cell volume with Zn2+substitution contribute to increased relative permittivity.  相似文献   

16.
Snowflake, a highly symmetrical hexagram figure, is challenging to be expressed by chemistry/supramolecular chemistry due to the complex structure. Herein, we have constructed super snowflake supramolecules using terpyridine (tpy)‐based metal‐organic building blocks with tpy‐Ru(II)‐tpy and tpy‐Zn(II)‐tpy connectivities through stepwise strategies in high yield. The structures were characterized by multi‐dimensional mass spectrometry and multi‐dimensional NMR spectrometry. In order to address the stability/tolerance of our designed super snowflake structures, ligand exchange behaviors between different supramolecules with various arm length were fully investigated by mass spectrometry. The study revealed that three modes could exist in such binary systems, including full exchange, partial exchange and self‐sorting (no exchange) depending on the length difference of ligands.  相似文献   

17.
In order to evaluate the scaling parameters of weakly cationic crosslinked network structures, poly(dialkylaminoethyl methacrylate)-based hydrogels were synthesized via free-radical crosslinking in aqueous solution varying systematically concentration of pregel solution. Based on the gel-preparation concentration, variation in structural properties, effective crosslinking density, average molecular weight of polymer chains, and thermodynamic parameters from combined swelling and elasticity results were discussed using the scaling theory to predict various exponent identities. The concentration dependence of compressive elastic modulus as-prepared state was described by a power-law relationship with the exponent of m = 3.55 indicating the importance of the trapped entanglements. Two structural characteristics, the network chain length N and the average molecular weight of polymer chains have inverse dependence on the gel-preparation concentration in the matrix, while the compressive moduli and effective crosslinking density show completely direct dependence. Experimentally determined N values of PDMAEMA hydrogels first decrease with increasing up to 0.2972 and the dependence of N on the gel-preparation concentration gives the relation with a scaling parameter n = −1.80, which coincides with the prediction of scaling theory. Acceptable agreement was found between the estimate of crosslink density fluctuations deduced from mechanical measurements and the results derived from independent swelling observations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48350.  相似文献   

18.
Semiflexible polymers and their assemblies are important in biology as cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. This research used shear rheology to demonstrate the tuning from worm-like to rod-like conformation in semiflexible polymers by polymer-solvent interactions. The conformation was assessed by the persistence length lp, and its influence, in the semidilute regime, was assessed by the scaling of zero-shear viscosity ηo with concentration c and molecular weight . The polymers were poly n-butyl and poly n-octyl isocyanate (PBIC and POIC, respectively). PBIC exhibited the largest lp in chlorinated solvents, and the solutions obeyed the scaling law . However, when PBIC was dissolved in benzene the lp was greatly reduced and the scaling law now was , consistent with a worm-like conformation. On the other hand, POIC dissolved in chlorinated and benzenic solvents exhibited a worm-like conformation and the scaling was . These results were contrasted with those of hydroxypropyl cellulose (HPC) aqueous solutions, which exhibit worm-like conformation, the solutions obeyed the scaling ηoc2.5 . Finally, the shear viscosity of the polyisocyanates and HPC obeyed the Saito scaling, valid for anisotropic particles in solution.  相似文献   

19.
The micellar, surface, and aggregation properties of biocompatible, imidazolium-based hydroxyl group-containing gemini surfactants, 1,1′-(propane-1,3-diyl-2-ol) bis(3-alkyl-1H-imidazol-3-ium)bromide, [CnIm-3OH-ImCn]Br2, were studied. The surface parameters like maximum surface excess concentration at air/water interface (Γmax), the minimum surface area occupied by surfactant molecules (Amin) and the related thermodynamic parameters such as, standard Gibbs free energy of micellization (), standard free energy of adsorption (), and free energy of surface at equilibrium ) were also determined from the surface parameters. The aggregation behavior has been elucidated from transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques which showed that these gemini surfactants have potential self-aggregation efficiency. Besides, some other physicochemical properties like foam stability, emulsifying power, and viscosity have been determined. The structural features of [CnIm-3OH-ImCn]Br2 enhance their surface-active properties. These features of gemini surfactants are of primary significance from pharmaceutical and biomedical viewpoints. The gemini surfactants may have great implications in drug formulations and delivery owing to their prominent aggregation and non-cytotoxic nature.  相似文献   

20.
Effect of Poly(l ‐lactide)/Poly(d ‐lactide) (PLLA/PDLA) block length ratio on the crystallization behavior of star‐shaped poly(propylene oxide) block poly(d ‐lactide) block poly (l ‐lactide) (PPO–PDLA–PLLA) stereoblock copolymers with molecular weights (Mn) ranging from 6.2 × 104 to 1.4 × 105 g mol?1 was investigated. Crystallization behaviors were studied utilizing differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Only stereocomplex crystallites formed in isothermal crystallization at 140 to 156°C for all samples. On one hand, the overall crystallization rate decreased as PLLA/PDLA block length ratio increased. As PLLA/PDLA block length ratio increased from 7:7 to 28:7, the value of half time of crystallization (t1/2) delayed form 2.85 to 5.31 min at 140°C. On the other hand, according to the Lauritzen–Hoffman theory, the fold‐surface energy (σe) was calculated. σe decreased from 77.7 to 73.3 erg/cm2 with an increase in PLLA/PDLA block length ratio. Correspondingly increase in nucleation density was observed by the polarized optical microscope. Results indicated that the PLLA/PDLA block length ratio had a significant impact on the crystallization behavior of PPO–PDLA–PLLA copolymers. POLYM. ENG. SCI., 55:2534–2541, 2015. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号