首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This study describes a novel route to synthesize vinyl pyridine‐styrene‐butadiene terpolymer rubber (VP rubber) montmorillonite clay nanocomposites by latex blending technique. The pyridine moiety of the VP rubber was modified with methyl iodide to form the pyridinium ion during latex blending. Cation exchange reaction of the pyridinium ion of the VP rubber latex with sodium montmorillonite occurred during latex stage mixing which helped to form VP rubber‐montmorillonite clay nanocomposites. Coagulation of the latex‐clay slurry produced nanocomposites master batch. The master batch was compounded with acrylonitrile butadiene rubber (NBR). Fourier Transform Infrared Spectroscopy (FTIR) confirmed the modification of the pyridine moiety of VP rubber. Wide angle X‐ray diffraction (WAXD), scanning electron microscopy‐energy dispersive X‐ray spectrophotometry (SEM‐EDS) and transmission electron microscopy (TEM) provided the evidences of formation of nanocomposite. Remarkable improvements in the mechanical properties were found by addition of small amount of modified clay. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
Wei-Gwo Hwang  Chang-Mou Wu 《Polymer》2004,45(16):5729-5734
Elastomer nanocomposites consisting of nitrile butadiene rubber (NBR) latex and layered silicates are prepared by a modified latex shear blending process aided with ball milling. The mode of dispersion of layered silicates in NBR is partially exfoliated and intercalated when the concentration of layered silicates is below 7.5 wt%, as evidenced by transmission electron microscopy and X-ray diffraction results. The tensile and tear mechanical properties are much higher than that of neat NBR. Specifically, the tensile and tear mechanical properties of the NBR/layered silicates increase by 200 and 60%, respectively. The decomposition temperature of the nanocomposites increases slightly.  相似文献   

3.
Nanocomposites of two different kinds of rubber (acrylonitrile-butadiene rubber NBR and styrene butadiene rubber SBR)/organo-montmorillonite nanocomposites modified by hexadecyltrimethyl ammonium bromide were prepared by the reactive mixing intercalation method in the presence of trimethylolpropane trimethylmethacrylate (TMPTMA). The influence of gamma irradiation on the morphology and properties of the rubber nanocomposites was investigated. Intercalated polar or unsaturated matrices (e.g., NBR and SBR)/OMMT nanocomposites can be obtained, which was confirmed by X-ray diffraction (XRD). The clay layers could be uniformly dispersed in the rubber matrix on the nanometer level. Mechanical tests showed that the nanocomposites had good mechanical properties as compared to the neat composites. The results also showed that the irradiated NBR/OMMT nanocomposites had higher thermal stabilities than irradiated SBR/OMMT nanocomposites.  相似文献   

4.
Acrylonitrile butadiene rubber (NBR)/bentonite (Bt) nanocomposites were synthesized by an one‐step method in NBR latex with (3‐Mercaptopropyl)trimethoxysilane (MPTMS) as a compatilizer. The nanocomposites were compounded with curing additives and then vulcanized. The prepared vulcanizates were characterized by Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD). The curing properties and mechanical properties were also investigated. The thermal properties were studied with thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology was investigated by field emission‐scanning electron microscopy (FE‐SEM). By swelling test, the swelling ratio and the crosslinking density were achieved. The hydrolyzation and condensation of MPTMS was identified by FTIR while the intercalated/exfoliated structure of Bt was determined by XRD. It was evident that the mechanical properties of the nanocomposites were significantly improved compared with the neat NBR. The well‐dispersed bentonite particles and effects of MPTMS were supported by the images from FE‐SEM. The results of TGA showed that the fastest weight‐loss temperature (Tmax) was elevated by over 10°C for the nanocomposites compared with the neat NBR, indicating an enhanced thermal stability. By swelling test, the swelling ratio was determined, decreased to 139% for the optimized NBR/MPTMS/Bt nanocomposites compared with 210% for neat NBR. POLYM. COMPOS., 36:1693–1702, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
The nanocomposites of nitrile–butadiene rubber (NBR) and organo‐montmorillonite modified by hexadecyltrimethyl ammonium bromide (HMMT) were prepared by the reactive mixing intercalation method in the presence of the resorcinol and hexamethylenetetramine complex (RH). The structure of the NBR–RH–HMMT nanocomposites was characterized by XRD, TEM, FTIR, determination of crosslinking density, and so on. The results showed that the d‐spacing of HMMT increased substantially with RH addition and the layers of HMMT were dispersed in rubber matrix on a nanometer scale. The mechanical properties of the NBR–RH–HMMT nanocomposites were far superior to those of NBR–HMMT composites, and the glass transition temperature of NBR–RH–HMMT nanocomposite was higher than that of NBR. The reactive mixing intercalation method by introducing RH could enhance the interface combination between the rubber and the organoclay through the interactions of RH with NBR and modified clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1905–1913, 2006  相似文献   

6.
In the present study, naturally occurring unfractionated bentonite clay was used to prepare styrene butadiene rubber/bentonite clay nanocomposite by latex stage blending. The bentonite clay was organo‐modified by in situ resol formation by the reaction of resorcinol and formaldehyde. The latex clay mixture was co‐coagulated with acid. The resulting clay masterbatch was compounded and evaluated by Fourier Transform Infrared spectroscopy, X‐ray diffraction (XRD), Transmission Electron Microscopy (TEM), Energy Dispersive X‐ray spectroscopy (EDS), Scanning Electron Microscopy, Thermogravimetric analysis, and Differential Scanning Calorimetry. XRD showed that the interplanar distance of the in situ resol‐modified bentonite clay increased from 1.23 to 1.41 nm for the unmodified bentonite. TEM analysis indicated partial exfoliation and/or intercalation. EDS (Si and Al mapping) of the clay revealed the nature of the dispersion in the nanocomposites vis‐à‐vis the conventional styrene‐butadiene rubber (SBR)/bentonite clay composite. Thermogravimetric analysis was used to compare the decomposition trends of the SBR/clay nanocomposites with the SBR/clay composite. The glass transition temperature of SBR/clay nanocomposites increased as compared with that of neat SBR. Substantial improvement in most of the other mechanical properties was also observed in case of the nanocomposites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Nanocomposites were prepared with different grades of nitrile–butadiene rubber (NBR) [with nitrile (CN) contents of 26, 35, and 42%] with organoclay (OC) by a melt‐compounding process. The rubber/clay nanocomposites were examined by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). An increase in the polarity of NBR affected the XRD results significantly. The dispersion level of the nanofiller in the nanocomposites was determined by a function of the polarity of the rubber, the structure of the clay, and their mutual interaction. The intercalated structure and unintercalated structure coexisted in the lower polar of NBR. In addition, a relatively uniformly dispersed state corresponded to a more intercalated structure, which existed in the higher polar of NBR matrix. Furthermore, high‐pressure vulcanization changed the extent of intercalation. The mechanical properties and gas barrier properties were studied for all of the compositions. As a result, an improvement in the mechanical properties was observed along with the higher polarity of NBR. This improvement was attributed to a strong interaction of hydrogen bonding between the CN of NBR and the OH of the clay. Changes in the gas barrier properties, together with changes in the polarity of the rubbers, were explained with the help of the XRD and TEM results. The higher the CN content of the rubber was, the more easily the OC approached to the nanoscale, and the higher the gas barrier properties were. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Different montmorillonites either, completely hydrophilic (Mont‐0), amphiphilic (Mont‐25, Mont‐50, and Mont‐75) or completely hydrophobic (Mont‐100) were used as reinforcing fillers for styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) individually to predict the influence of the different forms on the properties of the rubbers (rheometric characteristics and mechanical properties). The shifts in the glass transition temperatures after the clay insertion were determined from dynamic mechanical thermal analysis to investigate the preference and action of each form. In addition, the storage moduli were used as indications to the corresponding mechanical properties of the samples. The influences could be followed after comparing the impacts of aging conditions on the properties of rubber compositions. The obtained data may provide a platform to suggest the mechanism by which these forms can in some cases act as compatibilizers in addition to their reinforcing/plasticizing effect when employed with the physically incompatible NBR/SBR (50/50) blend, which helps to optimize the properties of nanocomposites based on these blends. The proposed mechanism of action showed good correlation with the results of the mechanical properties and x‐ray diffraction investigations as well. POLYM. ENG. SCI., 54:942–948, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Effect of alumina nanoparticle (ANP) on the properties of rubber compounds based on nitrile‐butadiene‐rubber (NBR) and NBR/phenolic‐resin (PH) blend is examined. To investigate the surface characteristics of the nanoparticles on the performance of nanoalumina‐filled compounds, trimethoxyvinylsilane (MVS) is attached chemically on the surface of ANP through an appropriate functionalization process. Various NBR and NBR/PH compounds filled with ANP and functionalized ANP (f‐ANP) are prepared via melt mixing using traditional open two‐roll mill. Microscopic analysis carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveals good dispersion of nanoalumina within the rubber matrix, indicating the effectiveness of the melt mixing for fabrication of the rubber/alumina nanocomposites. Nanocomposites of NBR and NBR/PH are subjected to various physical and mechanical tests including swelling, tensile, abrasion, and thermal tests and the role of ANP and f‐ANP on these properties are discussed. The results obtained based on this analysis suggest that as‐received ANP can provide good interaction with NBR possibly due to hydrogen bonding between hydroxyl group present on the nanoparticle surface and acrylonitrile group of NBR. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

10.
Xiu-Ying Zhao  Ming Tian  Hao Fong  Riguang Jin 《Polymer》2007,48(20):6056-6063
A hindered phenol (AO-80) was studied to prepare rubber nanocomposites with nitrile butadiene rubber (NBR). The NBR/AO-80 rubber nanocomposites were successfully developed by applying the adopted preparation procedure/conditions, especially by introducing mechanical kneading of the NBR/AO-80 composites at a temperature higher than the melting point of AO-80, followed by the crosslinking of NBR molecules during the subsequent hot-pressing/vulcanization process. The nanocomposites consisted of two phases: (1) the AO-80 enriched phase (nanoparticles with the average size of approximately 20 nm) and (2) the NBR enriched phase (matrix). The generation and uniform distribution of the nanoparticles were attributed to the high temperature mechanical kneading process, the strong intermolecular interactions between AO-80 and NBR molecules, and the formation of a three-dimensional NBR network. The morphological, structural and mechanical properties of the composites were systematically investigated in each preparation step using SEM, TEM, DSC, XRD, FT-IR, DMTA and a tensile tester. The results indicated that the prepared NBR/AO-80 rubber nanocomposites had single relaxation transitions, improved tensile strengths, high dynamic mechanical loss values, and reasonably good stabilities. The NBR/AO-80 rubber nanocomposites are expected to have important applications as a high performance damping material.  相似文献   

11.
In this work, nanocomposites of styrene butadiene rubber (SBR), cellulose II, and clay were prepared by cocoagulation of SBR latex, cellulose xanthate, and clay aqueous suspension mixtures. The incorporated amount of cellulose II was 15 phr, and the clay varied from 0 to 7 phr. The influence of cellulose II and clay was investigated by rheometric, mechanical, physicochemical, and morphological properties. From the analysis of transmission electron microscopy (TEM), dispersion in nanometric scale (below 100nm) of the cellulosic and mineral components throughout the elastomeric matrix was observed. XRD analysis suggested that fully exfoliated structure could be obtained by this method when low loading of silicate layers (up to 5 phr) is used. The results from mechanical tests showed that the nanocomposites presented better mechanical properties than SBR gum vulcanizate. Furthermore, 5 phr of clay is enough to achieve the best tensile properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Based on the character of a clay that could be separated into many 1‐nm thickness monolayers, clay styrene‐butadiene rubber (SBR) nanocomposites were acquired by mixing the SBR latex with a clay/water dispersion and coagulating the mixture. The structure of the dispersion of clay in the SBR was studied through TEM. The mechanical properties of clay/SBR nanocomposites with different filling amounts of clay were studied. The results showed that the main structure of the dispersion of clay in the SBR was a layer bundle whose thickness was 4–10 nm and its aggregation formed by several or many layer bundles. Compared with the other filler, some mechanical properties of clay/SBR nanocomposites exceeded those of carbon black/SBR composites and they were higher than those of clay/SBR composites produced by directly mixing clay with SBR through regular rubber processing means. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1873–1878, 2000  相似文献   

13.
Based on the character of a clay that could be separated into many 1-nm thickness monolayers, clay poly(vinylchloride)-nitrile butadiene rubber (PVC/NBR) thermoplastic elastomers (TPEs) were acquired using a Brabender Plasticorder at 150°C and 50 rpm rotor speed. Clay concentrations were progressively increased up to 10 phr of PVC/NBR composites. The rheological behavior of the clay PVC/NBR blends was assessed by dynamic mechanical analysis, as well as Brabender torque rheometry. The results revealed that the complex modulus (E?) and elastic modulus (E′) increased with clay loading, indicating that the actual strength of the blends improved. Tensile properties of the PVC/NBR-clay formulations with different filling amounts were studied. The results showed that the mechanical performance of the rubbery samples improved with clay loadings. The observed trend has been attributed to the reinforcing role played by layered clay due to better dispersion as well as improved interactions.  相似文献   

14.
Using the industrial technologies of rubber latex irradiation, hydrophilic nanoscale calcium carbonate (HNCC) slurry preparing and spray drying, we have prepared a novel ultrafine full-vulcanized powder nitrile butadiene rubber (UFPNBR)/HNCC nanocompound, in which the UFPNBR particles and HNCC particles are isolated and adhered to each other. When the UFPNBR/HNCC nanocompound powder is mixed with crude NBR, UFPNBR particles are easily dispersed well in NBR matrix because of their good compatibility, thus the HNCC particles are also dispersed in NBR matrix because of the carrier aidance of UFPNBR particles in 7 phr HNCC loading range, then the novel NBR/UFPNBR/HNCC ternary nanocomposites is fabricated. Compared with NBR/organic reagent-treated HNCC (ONCC) binary composites, the NBR/UFPNBR/HNCC ternary nanocomposites has shorter vulcanization time and better properties of abrasive resistance, oil resistance, dynamic compression properties and flame retardancy in fire.  相似文献   

15.
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Acrylonitrile-butadiene-styrene copolymer (ABS) clay nanocomposites were synthesized using two clays (sodium montmorillonite, laponite). Both colloidal stability and mechanical properties of the nanocomposites were dependant on aspect ratios of clays. Laponite, a low aspect ratio clay, reduced particle sizes of ABS clay nanocomposite latexes, enhanced colloidal stabilities, and increased viscosity of the latexes. The colloidal stability of ABS clay latexes may result from four factors. Firstly, the electrostatic repulsion forces originated from surface charges of clays and anionic surfactant contribute to colloidal stability. Secondly, laponite layers separate sodium montmorillonite layers and polybudadiene latex particles preventing the coagulation. Thirdly, the laponite layers adsorbed on latexes act like steric barriers against coagulation. Fourthly, increased viscosity reduces latex mobility, lowering collision possibility among latex particles. Resultant ABS clay nanocomposites showed exfoliated structures, and their mechanical properties related to the relative weight ratio of sodium montmorillonite to laponite: as portions of sodium montmorillonite increased, dynamic moduli of the nanocomposites increased, because sodium montmorillonite has higher aspect (length/thickness) ratio than laponite.  相似文献   

17.
Nitrile rubber (NBR)–clay nanocomposites were prepared by co‐coagulating the NBR latex and clay aqueous suspension. Transmission electron microscopy showed that the silicate layers of clay were dispersed in the NBR matrix at the nano level and had a planar orientation. X‐ray diffraction indicated that there were some nonexfoliated silicate layers in the NBR–clay nanocomposites. Stress–strain curves showed that the silicate layers generated evident reinforcement, modulus, and tensile strength of the NBR–clay nanocomposites, which were significantly improved with an increase in the amount of clay, and strain‐at‐break was higher than that of the gum NBR vulcanizate when the amount of clay was more than 5 phr. The NBR–clay nanocomposites exhibited an excellent gas barrier property; the reduction in gas permeability in the NBR–clay nanocomposites can be described by Nielsen's model. Compared with gum NBR vulcanizate, the oxygen index of the NBR–clay nanocomposites increased slightly. The feasibility of controlling rubber flammability via the nanocomposite approach needs to be evaluated further. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3855–3858, 2003  相似文献   

18.
Crosslinked α‐methylstyrene and acrylonitrile (MStAN) copolymer particles in a latex form were synthesized by free radical emulsion polymerization. The particles took a spherical shape with an average size of 53.1 nm in a narrow distribution. When filled into styrene‐butadiene rubber (SBR), nitrile‐butadiene rubber (NBR), and natural rubber (NR), the MStAN nano‐particles exhibited excellent reinforcing capabilities and the best in NBR. By the employment of heat treatment, mechanical properties of the MStAN‐filled SBR composites had got remarkable further improvements. But mechanical properties, together with the morphology, of the MStAN‐filled NBR composites, varied little after heat treatment, which, however, divulged the naturally good compatibility between the MStAN particles and the NBR matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
After‐hatching eggshell (AHES) nanobiofiller and nanocalcium carbonate (nano‐CA) were separately added to various elastomers, such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), and natural rubber (NR), in various amounts of 5, 10, and 15 phr. The effect of particle size and dispersion of such nanofillers on thermomechanical properties and curing characteristics were then investigated. The ultimate tensile properties of SBR and NR nanocomposites were improved to some extent when 5 phr of AHES nanofiller was added to the rubber compound compared to CA. In the case of NBR nanocompounds, however, the mechanical properties were seemingly comparable, irrespective of the type of nanofiller. This contradictive behavior could be attributed to the alteration of crosslink density due to particular filler–matrix interaction while using mineral and natural fillers. The results of the rheometric study revealed that using AHES rather than CA slightly increases the scorch time of all types of prepared nanocomposites, whereas a significant drop in the optimum curing time was seen for NBR nanocomposites containing AHES biofiller. Moreover, thermogravimetric analysis showed similar thermal stability for SBR nanocomposites containing AHES and CA fillers. Finer particle size of CA and higher porosity of AHES at high and low loading levels were respectively the main reasons for improvement of ultimate properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Rubber‐based nanocomposites were prepared with octadecyl amine modified sodium montmorillonite clay and styrene–butadiene rubber with different styrene contents (15, 23, and 40%). The solvent used to prepare the nanocomposites, the cure conditions, and the cure system were also varied to determine their effect on the properties of the nanocomposites. All the composites were characterized with X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies revealed exfoliation for the modified clay–rubber composites. The TEM photomicrographs showed a uniform distribution of the modified clay in the rubber matrix. The thickness of the particles in the exfoliated composites was around 10–15 nm. Although the FTIR study of the unmodified and modified clays showed extra peaks due to the intercalation of the amine chains into the gallery, the spectra for the rubber–clay nanocomposites were almost the same because of the presence of a very small amount of clay in the rubber matrix. All the modified clay–rubber nanocomposites displayed improved mechanical strength. The styrene content of the rubber had a pronounced effect on the properties of the nanocomposites. With increasing styrene content, the improvement in the properties was greater. Dicumyl peroxide and sulfur cure systems displayed similar strength, but higher elongation and slightly lower modulus values were obtained with the sulfur cure system. The curing of the samples at four different durations at 160°C showed that the cure time affected the properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 698–709, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号