首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Radiation performance of dish solar concentrator/cavity receiver systems   总被引:3,自引:0,他引:3  
The Monte-Carlo ray-tracing method is applied and coupled with optical properties to predict radiation performance of dish solar concentrator/cavity receiver systems. The effects of sunshape and surface slope error have been studied and the corresponding probability models are introduced in this paper. Taking into account the above-mentioned factors, we show that the directional features of the focal flux affect the radiation flux distribution of cavity receiver, present criteria for the characterization of directional attributes, and describe a method for their calculation. Based on the concept of equivalent radiation flux, an upside-down pear cavity receiver is proposed in view of directional attributes of focal flux. Receiver design and modelling guidelines are presented. The uniformity performance of the wall flux is compared with five traditional geometries.  相似文献   

2.
In this work, a new modeling coupling the inhomogeneous radiation flux distribution for the dish receiver is proposed and developed. The radiation transmission and absorbing process of the dish concentrating system is achieved by using the Monte Carlo ray tracing method (MCRT method), which reveals the high-order nonuniformity of the irradiance flux distribution on the inner wall of the dish receiver. The implementation of the three-dimensional numerical simulation coupling the heat loss of the dish receiver is by combining the microscopic MCRT method and the macroscopic SIMPLE method. In addition, a coupled photon statistic method is established to ensure the accuracy of heat flux distribution computation. The modeling result reveals that the temperature distributions of the inner receiver surface are significantly influenced by the inhomogeneous radiation flux. The temperature of the high local heat flux density area that lies in the middle part of the inner surface reaches 1374.8 K, which is even higher than the top area. In addition, the combined heat losses from natural convection and surface radiation are analyzed and compared respectively. It is found that the surface radiation heat loss is the predominant heat loss pattern of the combined heat transfer, and the natural convection loss is sensitive to solar intensity and the orientation of dish cavity receiver but changes little with the emissivity of the inner surface.  相似文献   

3.
Dish‐Stirling concentrated solar power (DS‐CSP) system is a complex system for solar energy‐thermal‐electric conversion. The dish concentrator and cavity receiver are optical devices for collecting the solar energy in DS‐CSP system; to determine the geometric parameters of dish concentrator is one of the important steps for design and development of DS‐CSP system, because it directly affects the optical performance of the cavity receiver. In this paper, the effects of the geometric parameters of a dish concentrator including aperture radius, focal length, unfilled radius, and fan‐shaped unfilled angle on optical performance (ie, optical efficiency and flux distribution) of a cavity receiver were studied. Furthermore, the influence of the receiver‐window radius of the cavity receiver and solar direct normal irradiance is also investigated. The cavity receiver is a novel structure that is equipped with a reflecting cone at bottom of the cavity to increases the optical efficiency of the cavity receiver. Moreover, a 2‐dimensional ray‐tracking program is developed to simulate the sunlight transmission path in DS‐CSP system, for helping understanding the effects mechanism of above parameters on optical performance of the cavity receiver. The analysis indicates that the optical efficiency of the cavity receiver with and without the reflecting cone is 89.88% and 85.70%, respectively, and former significantly increased 4.18% for 38 kW XEM‐Dish system. The uniformity factor of the flux distribution on the absorber surface decreases with the decreases of the rim angle of the dish concentrator, but the optical efficiency of the cavity receiver increases with the decreases of the rim angle and the increase amplitude becomes smaller and smaller when the rim angle range from 30° to 75°, So the optical efficiency and uniformity factor are conflicting performance index. Moreover, the unfilled radius has small effect on the optical efficiency, while the fan‐shaped unfilled angle and direct normal irradiance both not affect the optical efficiency. In addition, reducing the receiver‐window radius can improve the optical efficiency, but the effect is limited. This work could provide reference for design and optimization of the dish concentrator and establishing the foundation for further research on optical‐to‐thermal energy conversion.  相似文献   

4.
The design of a solar parabolic dish concentrator is proposed based on an array of polyester mirror membrane facets that are clamped along their edges by elliptical rims and focused by applying a slight vacuum underneath the membranes, creating an ellipsoidal shape. The axes ratio of the elliptical rims varies with the position on the dish to approach the paraboloidal shape. The elastic mirror membrane deformation under uniform pressure load is simulated by finite element structural analysis and the resulting radiative flux distribution at the focal plane of the dish is determined by the Monte Carlo ray-tracing technique. Optimization of the membrane deflection is accomplished for maximum solar flux concentration at the focal plane. Two dish geometries are examined: (i) a 1.5-m radius 3-m focal length small dish, comprising 19 facets of 0.275-m radius with four different curvatures, yielding a peak solar concentration ratio of 5515 suns and a mean solar concentration ratio of 1435 suns with an intercept factor of 90% over a 3-cm radius disk target and (ii) a 10.9-m radius 11-m focal length large dish, comprising 121 facets of 0.9-m radius with 15 different curvatures, yielding a peak solar concentration ratio of 23,546 suns and mean solar concentration ratio of 8199 suns with an intercept factor of 90% over a 10.4-cm radius disk target. The performance of the second geometry is compared to that of the more conventional design of a multi-facet dish concentrator consisting of identical circular facets and shown to reach – on the same target area – a 12% higher mean solar concentration ratio as well as a 6.6% higher intercept factor. The simulated membrane shape is experimentally verified with photogrammetrical measurements carried out on a prototype facet of the small dish.  相似文献   

5.
针对一种轻质量的张拉薄膜太阳能汇聚系统,以三角元薄膜拼合反射面为研究对象,同时考虑模型原理误差、太阳光不平行度、接收器遮挡影响,跟踪误差等因素,采用蒙特卡罗法数值对比2种不同三角元拼合膜面在接收面的汇聚辐射能流密度分布情况,分析不同拼合形式、分环数、焦径比、跟踪误差对接收面辐射能流密度分布的影响,为三角元薄膜拼合太阳能聚光器参数选择和聚焦性能分析提供依据。  相似文献   

6.
The nonuniform and high‐gradient solar radiation flux on the absorber surface of solar dish concentrator/cavity receiver (SDCR) system will affect its operational reliability and service lifetime. Therefore, homogenization of the flux distribution is critical and important. In this paper, 2 mirror rearrangement strategies and its optimization method by combining a novel ray tracing method and the genetic algorithm are proposed to optimize the parabolic dish concentrator (PDC) so as to realize the uniform flux distribution on the absorber surface inside the cavity receiver of SDCR system. The mirror rearrangement strategy includes a mirror rotation strategy and mirror translation strategy, which rotate and translate (along the focal axis) each mirror unit of the PDC to achieve multipoint aiming, respectively. Firstly, a correlation model between the focus spot radius and mirror rearrangement parameters is derived as constraint model to optimize the PDC. Secondly, a novel method named motion accumulation ray‐tracing method is proposed to reduce the optical simulation time. The optical model by motion accumulation ray‐tracing method and optimization model of SDCR system are established in detailed, and then, an optimization program by combining a ray‐tracing code and genetic algorithm code in C++ is developed and verified. Finally, 3 typical cavity receivers, namely, cylindrical, conical, and spherical, are taken as examples to fully verify the effectiveness of these proposed methods. The results show that the optimized PDC by mirror rearrangement strategies can not only greatly improve the flux uniformity (ie, reduce the nonuniformity factor) and reduce the peak local concentration ratio of the absorber surface but also obtain excellent optical efficiency and direct useful energy ratio. A better optimization results when the PDC is optimized by mirror rotation strategy at aperture radius of 7.0 m, focal length of 6.00 m, and ring number of 6; the nonuniform factor of the cylindrical, conical, and spherical cavity receivers is greatly reduced from 0.63, 0.67, and 0.45 to 0.18, 0.17, and 0.26, respectively; the peak local concentration ratio is reduced from 1140.00, 1399.00, and 633.30 to 709.10, 794.00, and 505.90, respectively; and the optical efficiency of SDCR system is as high as 92.01%, 92.13%, and 92.71%, respectively. These results also show that the dish concentrator with same focal length can match different cavity receivers by mirror rearrangement and it can obtain excellent flux uniformity.  相似文献   

7.
An integrated simulation approach, which couples Monte Carlo ray tracing (MCRT) and Gebhart methods, is proposed to simulate solar radiation transfer in a solar power tower system with a cavity receiver. The MCRT method is used to simulate the solar radiation transfer process from the heliostat field to interior surfaces of the cavity receiver, and the Gebhart method is used to simulate the multiple reflections process of solar radiation within the cavity. This integrated simulation method not only reveals the cavity effect on receiver performance but also provides real-time simulation results. Based on this method, the reflection loss of the cavity receiver and solar flux distributions are discussed in detail. The results indicate that the cavity effect can significantly reduce the reflection loss and homogenize the concentrated solar energy distributed on interior surfaces to some extent. Moreover, the surface absorptivity has less effect on the reflection loss when cavity effect is considered. The cavity effect on homogenizing solar flux distributions is greater with lower surface absorptivity. In addition, although the concentrated solar energy is distributed on the cavity aperture with similar shapes at different times, the shape of the solar flux distribution on interior surfaces varies greatly with time.  相似文献   

8.
建立了球形、圆柱形、圆锥形和平顶圆锥形4种典型腔式吸热器与抛物面聚光器的三维模型,利用蒙特卡洛光线追踪法预测了4种典型腔式吸热器内部辐射能流的分布,其中球形吸热器内部的辐射能流分布均匀性最好,且辐射峰值最小,具有较好的光学性能。通过统计逸出腔口的反射光计算出这4种腔式吸热器的反射光损,其中球形吸热器的反射光损最小。在聚光器反射率为0.9,腔体内壁吸收率为0.9时,球形吸热器反射光损仅为0.66%,聚光器/球形吸热器的光学效率为88.9%。  相似文献   

9.
Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator.  相似文献   

10.
In this paper, thermal performance analysis of 20 m2 prototype fuzzy focal solar dish collector is presented. The focal image characteristics of the solar dish are determined to propose the suitable design of absorber/receiver. First, theoretical thermal performance analysis of the fuzzy focal solar parabolic dish concentrator with modified cavity receiver is carried out for different operating conditions. Based on the theoretical performance analysis, the total heat loss (conduction, convection and radiation heat losses) from the modified cavity receiver is estimated. It is observed that the maximum theoretical efficiencies of solar dish collector are found to be as 79.2% for no wind conditions and 78.2% and 77.8% for side-on and head-on winds speed of 5 m/s respectively. Latter, real time analysis of parabolic dish collector with modified cavity receiver is carried out in terms of stagnation test, time constant test and daily performance test. From stagnation test, the overall heat loss coefficient is found to be 356 W/m2 K. The time constant test is carried out to determine the influence of sudden change in solar radiation at steady state conditions. The daily performance tests are conducted for different flow rates. It is found that the efficiency of the collector increases with the increase of volume flow rates. The average thermal efficiencies of the parabolic dish collector for the volume flow rate of 100 L/h and 250 L/h are found to be 69% and 74% for the average beam radiation (Ibn) of 532 W/m2 and 641 W/m2 respectively.  相似文献   

11.
碟式聚光器和塔式聚光器均是点聚光系统,为了用月光法间接测量塔式聚光系统的聚光比分布,适宜用聚光稳定的碟式聚光器研究不同月相的光源亮度分布对聚光比分布的影响。主要建立月光下碟式聚光器的聚光比分布计算模型,首先依据拍摄的月相灰度图像建立分块均匀的光源亮度分布模型,再基于三维激光扫描点云数据生成准确的反射镜面形;在光线追迹过程中均匀采样镜面上的反射点,且考虑聚光器的跟踪误差;镜面的光学误差与光源的亮度分布合并为等效的光源亮度分布。模拟聚光比分布与实验聚光比分布的余弦相似度α>95%,光学模型准确性高。  相似文献   

12.
针对大开口和更高运行温度的槽式太阳能热发电系统,提出一种可实现高聚光比、低辐射热损及能流密度均匀的新型槽式太阳集热器,即在集热管内放置外壁具有太阳选择吸收膜层和内壁具有反射膜层二次聚光器的大开口槽式太阳集热器。建立圆弧为微元段的自适应设计新方法,提出3种典型的二次聚光器面型,利用蒙特卡洛光线追迹方法仿真新型集热器的能流密度分布特性,验证该光学仿真方法,分析影响集热器光学性能的各种因素。结果表明,该集热器可显著提升集热效率。  相似文献   

13.
为解决线性菲涅尔太阳能集热系统单轴跟踪过程中出现的聚光焦线偏移以及降低系统跟踪能耗等问题,提出一种透射式菲涅尔定焦线太阳能聚光器.该聚光器采用极轴跟踪方式与线性菲涅尔透镜定期滑移调节方式相结合,可实现固定焦线聚光.将该聚光器与三角腔体吸收器所组成的太阳能集热系统,利用基于蒙特卡罗光线追迹法的TracePro光学软件分析...  相似文献   

14.
The Brayton cycle's heat source does not need to be from combustion but can be extracted from solar energy. When a black cavity receiver is mounted at the focus of a parabolic dish concentrator, the reflected light is absorbed and converted into a heat source. The second law of thermodynamics and entropy generation minimisation are applied to optimise the geometries of the recuperator and receiver. The irreversibilities in the recuperative solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In a small‐scale open and direct solar thermal Brayton cycle with a micro‐turbine operating at its highest compressor efficiency, the geometries of a cavity receiver and counterflow‐plated recuperator can be optimised in such a way that the system produces maximum net power output. A modified cavity receiver is used in the analysis, and parabolic dish concentrator diameters of 6 to 18 m are considered. Two cavity construction methods are compared. Results show that the maximum thermal efficiency of the system is a function of the solar concentrator diameter and choice of micro‐turbine. The optimum receiver tube diameter is relatively large when compared with the receiver size. The optimum recuperator channel aspect ratio for the highest maximum net power output of a micro‐turbine is a linear function of the system mass flow rate for a constant recuperator height. For a system operating at a relatively small mass flow rate, with a specific concentrator size, the optimum recuperator length is small. For the systems with the highest maximum net power output, the irreversibilities are spread throughout the system in such a way that the internal irreversibility rate is almost three times the external irreversibility rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
To utilize solar energy at a high temperature, a parabolic dish/cavity receiver configuration is often used. The energy loss mechanisms of such a system are analyzed. System efficiency is defined as the power absorbed by the working fluid circulating in the cavity divided by the solar power falling on the concentrator aperture. Power profiles produced in cavities of varying geometry with concentrators of varying rim angle are also discussed. It is found that varying concentrator rim angle and cavity geometry can greatly affect the cavity power profile without a large effect on system efficiency. Cavity isothermality often requires a nonlinear power profile , particularly in a thermochemical system. The methodology described can be used to optimize concentrator/cavity design variables.  相似文献   

16.
I. Palavras  G.C. Bakos   《Renewable Energy》2006,31(15):2422-2431
This paper deals with the development and performance characteristics of a low-cost dish solar concentrator and its application in zeolite desorption. The dish solar concentrator consists of an old damaged satellite dish, purchased from a scrap yard, and a polymer mirror film used as reflecting surface. The proposed concentrator is connected to a sun-tracking system which is based on an electronic circuit that processes the input signals from a set of sensors and drives the dish actuator. The solar thermal energy application to adsorption technology (with the sorption pair water/zeolite) is simulated using the ‘Ice-Quick’ device manufactured by Zeo-Tech GmbH. Samples from two types of zeolites were initially brought to saturation condition and then mounted on the focal point of the dish solar concentrator in order to be regenerated. Experimental results are presented and useful conclusions are drawn.  相似文献   

17.
An energy transfer and conversion model for high-temperature solar cavity receivers has been developed using the transport behaviour of solar radiation as described by the spectral radiative exchange factors. A Monte-Carlo ray-tracing method coupled with optical properties was adopted, to predict radiation characteristics of the solar collector system by calculating radiative exchange factors. A cavity receiver with a plano-convexo quartz window was proposed, based upon the directional characteristics of the focal flux and the redistribution effect of the quartz window. Parametric studies on the windowed receiver provided a more uniform flux distribution, higher efficiency and lower loss than the windowless receivers. The predicted results serve as a design reference for the solar receivers or reactors in high-temperature applications.  相似文献   

18.
聚光太阳能发电技术应用与前景   总被引:4,自引:0,他引:4  
分析了聚光太阳能发电三大技术(线性聚光系统、碟/引擎系统、电力塔系统)以及热能储存系统,阐述了其结构、工作原理与研究方向,比较了这三大技术之间的经济技术性能,介绍了适合我国太阳能辐射量大的边远地区碟/引擎系统的应用,展示了太阳能热发电技术的应用前景及对节能减排的贡献。  相似文献   

19.
Concentration distributions on a cylindrical receiver in a paraboloidal dish concentrator are computed for space applications (no atmosphere). A geometric optics method is applied which integrates over the solar disk and the concentrator projected surface, and maps analytically, in implicit closed form, through the concentrator and onto the receiver. Finite sunshape, concentrator surface errors, and pointing system zero-mean and constant offset errors are considered. Results define the section of the receiver surface which receives the majority of the concentrated flux, where the receiver's aperture might be located. Results are given in terms of concentrator geometry, concentrator total system error tolerance, receiver geometry, and pointing offset error. In cases with pointing offset error (nonzero mean pointing error), circumferentially varying concentration distributions are shown.  相似文献   

20.
Chern Sing Lim  Li Li 《Solar Energy》2009,83(8):1200-1616
This paper discusses on the flux distribution of a quasi-single stage solar furnace which consists of a non-imaging focusing heliostat as the primary stage and a much smaller spherical concentrator as a secondary. As the optics of the primary stage heliostat is of non-imaging nature, the analytical method for studying the flux distribution of the hot spot of this type of solar furnace would be complicated. Therefore, a digital simulation approach has been employed. Flux distributions of the hot spot for several different incident angles, which have covered all the extreme cases of operating conditions have been simulated. Simulation result shows that a solar furnace using an 8 × 8 m non-imaging focusing heliostat with 289 mirrors coupled with a spherical concentrator with 0.7 m aperture and 27 cm focal length is theoretically capable of achieving flux concentration of 25,000 suns. Concentration contours of flux distribution for several interesting cases are presented, the different working areas of high flux footage from 5000 to 15,000 suns have been compiled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号