首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,4,5‐Triamino‐1,2,4‐triazolium 5‐nitrotetrazolate ( 2 ) was synthesized in high yield from 3,4,5‐triamino‐1,2,4‐triazole (guanazine) ( 1 ) and ammonium 5‐nitrotetrazolate. The new compound 2 was characterized by vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 15N), elemental analysis and single crystal X‐ray diffraction (triclinic, P(‐1), a=0.7194(5), b=0.8215(5), c=0.8668(5) nm, α=75.307(5), β=70.054(5), γ=68.104(5)°, V=0.4421(5) nm3, Z=2, ϱ=1.722 g cm−1, R1=0.0519 [F>4σ(F)], wR2(all data)=0.1154). The 15N NMR spectrum and X‐ray crystal structure (triclinic, P‐1, a=0.5578(5), b=0.6166(5), c=0.7395(5) nm, α=114.485(5)°, β=90.810(5)°, γ=97.846(5)°, V=0.2286(3) nm3, Z=2, ϱ=1.658 g cm−1, R1=0.0460 [F>4σ(F)], wR2(all data)=0.1153) of 1 were also determined.  相似文献   

2.
The enthalpies of combustion (ΔcombH) of dinitrobiuret (DNB) and diaminotetrazolium nitrate (HDAT‐NO3) were determined experimentally using oxygen bomb calorimetry: ΔcombH(DNB)=5195±200 kJ kg−1, ΔcombH(HDAT‐NO3)=7900±300 kJ kg−1. The standard enthalpies of formation (ΔfH°) of DNB and HDAT‐NO3 were obtained on the basis of quantum chemical computations at the electron‐correlated ab initio MP2 (second order Møller‐Plesset perturbation theory) level of theory using a correlation consistent double‐zeta basis set (cc‐pVTZ): ΔfH°(DNB)=−353 kJ mol−1, −1 829 kJ kg−1; ΔfH°(HDAT‐NO3)=+254 kJ mol−1, +1 558 kJ kg−1. The detonation velocities (D) and detonation pressures (P) of DNB and HDAT‐NO3 were calculated using the empirical equations by Kamlet and Jacobs: D(DNB)=8.66 mm μs−1, P(DNB)=33.9 GPa, D(HDAT‐NO3)=8.77 mm μs−1, P(HDAT‐NO3)=33.3 GPa.  相似文献   

3.
Some thermodynamic and explosive properties of the recently reported 1‐azido‐2‐nitro‐2‐azapropane (ANAP) have been determined in a combined computational ab initio (MP2/aug‐cc‐pVDZ) and EXPLO5 (Becker–Kistiakowsky–Wilson's equation of state, BKW EOS) study. The enthalpy of formation of ANAP in the liquid phase was calculated to be ΔfH°, ANAP(l)=+297.1 kJ mol−1. The heat of detonation (Qv), the detonation pressure (P), and the detonation velocity of ANAP were calculated to be Qv=−6088 kJ kg−1, P=23.8 GPa, D=8033 m s−1. A mixture of ANAP and tetranitromethane (TNM) was investigated in an attempt to tailor the impact sensitivity of ANAP, but results obtained indicate that the mixture is almost as sensitive as pure ANAP. On the other hand, ANAP and TNM were found to be chemically compatible (1H, 13C, 14N NMR; DSC) and a 1 : 1 mixture (by weight) of both components was calculated to have superior explosive properties than either of the individual components: Qv=−6848 kJ kg−1, P=27.0 GPa, D=8284 m s−1.  相似文献   

4.
5‐Aminotetrazolium nitrate was synthesized in high yield and characterized using Raman and multinuclear NMR spectroscopy (1H, 13C, 15N). The molecular structure of 5‐aminotetrazolium nitrate in the crystalline state was determined by X‐ray crystallography: monoclinic, P 21/c, a=1.05493(8) nm, b=0.34556(4) nm, c=1.4606(1) nm, β=90.548(9)°, V=0.53244(8) nm3, Z=4, ϱ=1.847 g cm−3, R1=0.034, wR2 (all data)=0.090. The thermal stability of 5‐aminotetrazolium nitrate was determined using differential scanning calorimetry; the compound decomposes at 167 °C. The enthalpy of combustion (ΔcombH) of 5‐aminotetrazolium nitrate ([CH4N5]+[NO3]) was determined experimentally using oxygen bomb calorimetry: ΔcombH([CH4N5]+[NO3])=−6020±200 kJ kg−1. The standard enthalpy of formation (ΔfH°) of [CH4N5]+[NO3] was obtained on the basis of quantum chemical computations at the electron‐correlated ab initio MP2 (second order Møller‐Plesset perturbation theory) level of theory using a correlation consistent double‐zeta basis set (cc‐pVTZ): ΔfH°([CH4N5]+[NO3](s))=+87 kJ mol−1=+586 kJ kg−1. The detonation velocity (D) and the detonation pressure (P) of 5‐aminotetrazolium nitrate were calculated using the empirical equations by Kamlet and Jacobs: D([CH4N5]+[NO3])=8.90 mm μs−1 and P([CH4N5]+[NO3])=35.7 GPa.  相似文献   

5.
The energetic material 3‐(4‐aminofurazan‐3‐yl)‐4‐(4‐nitrofurazan‐3‐yl)furazan (ANTF) with low melting‐point was synthesized by means of an improved oxidation reaction from 3,4‐bis(4′‐aminofurazano‐3′‐yl)furazan. The structure of ANTF was confirmed by 13C NMR spectroscopy, mass spectrometry, and the crystal structure was determined by X‐ray diffraction. ANTF crystallized in monoclinic system P21/c, with a crystal density of 1.785 g cm−3 and crystal parameters a=6.6226(9) Å, b=26.294(2) Å, c=6.5394(8) Å, β=119.545(17)°, V=0.9907(2) nm3, Z=4, μ=0.157 mm−1, F(000)=536. The thermal stability and non‐isothermal kinetics of ANTF were studied by differential scanning calorimetry (DSC) with heating rates of 2.5, 5, 10, and 20 K min−1. The apparent activation energy (Ea) of ANTF calculated by Kissinger's equation and Ozawa's equation were 115.9 kJ mol−1 and 112.6 kJ mol−1, respectively, with the pre‐exponential factor lnA=21.7 s−1. ANTF is a potential candidate for the melt‐cast explosive with good thermal stability and detonation performance.  相似文献   

6.
Triazidotrinitro benzene, 1,3,5‐(N3)3‐2,4,6‐(NO2)3C6 ( 1 ) was synthesized by nitration of triazidodinitro benzene, 1,3,5‐(N3)3‐2,4‐(NO2)2C6H with either a mixture of fuming nitric and concentrated sulfuric acid (HNO3/H2SO4) or with N2O5. Crystals were obtained by the slow evaporation of an acetone/acetic acid mixture at room temperature over a period of 2 weeks and characterized by single crystal X‐ray diffraction: monoclinic, P 21/c (no. 14), a=0.54256(4), b=1.8552(1), c=1.2129(1) nm, β=94.91(1)°, V=1.2163(2) nm3, Z=4, ϱ=1.836 g⋅cm−3, Rall =0.069. Triazidotrinitro benzene has a remarkably high density (1.84 g⋅cm−3). The standard heat of formation of compound 1 was computed at B3LYP/6‐31G(d, p) level of theory to be ΔH°f=765.8 kJ⋅mol−1 which translates to 2278.0 kJ⋅kg−1. The expected detonation properties of compound 1 were calculated using the semi‐empirical equations suggested by Kamlet and Jacobs: detonation pressure, P=18.4 GPa and detonation velocity, D=8100 m⋅s−1.  相似文献   

7.
We investigated the heat of formation (ΔfH) of polynitrocubanes using density functional theory B3LYP and HF methods with 6‐31G*, 6‐311+G**, and cc‐pVDZ basis sets. The results indicate that ΔfH firstly decreases (nitro number m=0–2) and then increases (m=4–8) with each additional nitro group being introduced to the cubane skeleton. ΔfH of octanitrocubane is predicted to be 808.08 kJ mol−1 at the B3LYP/6‐311+G** level. The Gibbs free energy of formation (ΔfG) increases by about 40–60 kJ mol−1 with each nitro group being added to the cubane when the substituent number is fewer than 4, then ΔfG increases by about 100–110 kJ mol−1 with each additional group being attached to the cubic skeleton. Both the detonation velocity and the pressure for polynitrocubanes increase as the number of substituents increases. Detonation velocity and pressure of octanitrocubane are substantially larger than the famous widely used explosive cyclotetramethylenetetranitramine (HMX).  相似文献   

8.
The asymmetric 1,4‐addition of phenylboronic acid to cyclohexenone were performed by using a low amount of rhodium/(R)‐(6,6′‐dimethoxybiphenyl‐2,2′‐diyl)bis[bis(3,4,5‐trifluorophenyl)phosphine] (MeO‐F12‐BIPHEP) catalyst. Because the catalyst shows thermal resistance at 100 °C, up to 0.00025 mol% Rh catalyst showed good catalytic activity. The highest turnover frequency (TOF) and turnover number (TON) observed were 53,000 h−1 and 320,000, respectively. The enantioselectivities of the products were maintained at a high level of 98% ee in these reactions. The Eyring plots gave the following kinetic parameters (ΔΔH=−4.0±0.1 kcal mol−1 and ΔΔS=−1.3±0.3 cal mol−1 K−1), indicating that the entropy contribution is relatively small. Both the result and consideration of the transition state in the insertion step at the B3LYP/6‐31G(d) [LANL2DZ for rhodium] levels indicated that the less σ‐donating electron‐poor (R)‐MeO‐F12‐BIPHEP could be creating a rigid chiral environment around the rhodium catalyst even at high temperature.  相似文献   

9.
Isomers of 4‐amino‐1,3‐dinitrotriazol‐5‐one‐2‐oxide (ADNTONO) are of interest in the contest of insensitive explosives and were found to have true local energy minima at the DFT‐B3LYP/aug‐cc‐pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol‐5‐one N‐oxides were obtained in their ground state. Kamlet‐Jacob equations were used to evaluate the performance properties. The detonation properties of ADNTONO (D=10.15 to 10.46 km s−1, P=50.86 to 54.25 GPa) are higher compared with those of 1,1‐diamino‐2,2‐dinitroethylene (D=8.87 km s−1, P=32.75 GPa), 5‐nitro‐1,2,4‐triazol‐3‐one (D=8.56 km s−1, P=31.12 GPa), 1,2,4,5‐tetrazine‐3,6‐diamine‐1,4‐dioxide (D=8.78 km s−1, P=31.0 GPa), 1‐amino‐3,4,5‐trinitropyrazole (D=9.31 km s−1, P=40.13 GPa), 4,4′‐dinitro‐3,3′‐bifurazan (D=8.80 km s−1, P=35.60 GPa) and 3,4‐bis(3‐nitrofurazan‐4‐yl)furoxan (D=9.25 km s−1, P=39.54 GPa). The  NH2 group(s) appears to be particularly promising area for investigation since it may lead to two desirable consequences of higher stability (insensitivity), higher density, and thus detonation velocity and pressure.  相似文献   

10.
RAFT polymerization of N‐vinyl pyrrolidone (NVP) has been investigated in the presence of chain transfer agent (CTA), i.e., prop‐2‐ynyl morpholine‐4‐carbodithioate (PMDC). The influence of reaction parameters such as monomer concentration [NVP], molar ratio of [CTA]/[AIBN, i.e., 2,2′‐azobis (2‐methylpropionitrile)] and [NVP]/[CTA], and temperature have been studied with regard to time and conversion limit. This study evidences the parameters leading to an excellent control of molecular weight and molar mass dispersity. NVP has been polymerized by maintaining molar ratio [NVP]: [PMDC]: [AIBN] = 100 : 1 : 0.2. Kinetics of the reaction was strongly influenced by both temperature and [CTA]/[AIBN] ratio and to a lesser extent by monomer concentration. The activation energy (Ea = 31.02 kJ mol?1) and enthalpy of activation (ΔH?= 28.29 kJ mol?1) was in a good agreement to each other. The negative entropy of activation (ΔS? = ?210.16 J mol‐1K‐1) shows that the movement of reactants are highly restricted at transition state during polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Low‐melting paraffin wax was successfully used as a phlegmatizing agent to perform semi‐micro oxygen bomb calorimetry of spectroscopically pure samples of the sensitive explosive peroxides TATP and DADP. The energies of combustion (ΔcU) were measured and the standard enthalpies of formation (ΔfH°) were derived using the CODATA values for the standard enthalpies of formation of the combustion products. Whilst the measured ΔfH° of DADP (ΔfH°=−598.5 ± 39.7 kJ mol−1) could not be compared to any existing literature value, the measured ΔfH° value of TATP (ΔfH°=+151.4 ± 32.7 kJ mol−1) did not correlate well with the only existing experimental value and confirmed that TATP is an endothermic cyclic peroxide.  相似文献   

12.
BACKGROUND: 2‐ethylhexylphosphonic acid mono‐(2‐ethylhexyl) ester (HEHEHP, H2A2) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec‐nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied. RESULTS: The synergistic enhancement coefficient decreases with increasing atomic number of the lanthanoid. A significant synergistic effect is found for the extraction of La3+ as the complex LaH2ClA2B2 with mixtures of HEHEHP and CA100. The equilibrium constant and thermodynamic functions obtained from the experimental results are 10?0.92 (KAB), 13.23 kJ mol?1H), 5.25 kJ mol?1G), and 26.75 J mol?1 K?1S), respectively. CONCLUSION: Graphical and numerical methods have been successfully employed to determine the stoichiometries for the extraction of La3+ with mixtures of HEHEHP and CA100. The mixtures have different extraction effects on different rare earths, which provides the possibility for the separation of yttrium from heavy rare earths at an appropriate ratio of HEHEHP and CA100. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The M06‐2X/6‐311G(d,p) and B3LYP/6‐311G(d,p) density functional methods and electrostatic potential analysis were used for calculation of enthalpy of sublimation, crystal density and enthalpy of formation of some thermally stable explosives in the gas and solid phases. These data were used for prediction of their detonation properties including heat of detonation, detonation pressure, detonation velocity, detonation temperature, electric spark sensitivity, impact sensitivity and deflagration temperature using appropriate methods. The range of different properties for these compounds are: crystal density 1.51–2.01 g cm−3, enthalpy of sublimation 346.4–424.7 kJ mol−1, the solid phase enthalpy of formation 500.4–860.6 kJ mol−1, heat of detonation 13.64–17.57 kJ g−1, detonation pressure 33.0–37.0 GPa, detonation velocity 8.5–9.5 km s−1, detonation temperature 5488–6234 K, electric spark sensitivity 7.89–9.47 J, impact sensitivity 21–38 J, deflagration temperature 560–586 K and power [%TNT] 207–276. The results show that two novel energetic compounds N,N′‐(diazene‐1,2‐diylbis(2,3,5,6‐tetranitro‐4,1‐phenylene))bis(5‐nitro‐4H‐1,2,4‐triazol‐3‐amine) (DDTNPNT3A) and 1,1′‐(diazene‐1,2‐diylbis(2,3,5,6‐tetranitro‐4,1‐phenylene))bis(3‐nitro‐1H‐1,2,4‐triazol‐5‐amine) (DDTNPNT5A) can be introduced as thermally explosives with high detonation performance.  相似文献   

14.
Density functional theory (DFT) calculations were performed for a series of polynitrobenzene derivatives. Some nitrobenzenes with amino groups attached were also investigated as a benchmark or as a precursor. Heats of formation (HOF) were evaluated. The isodesmic reactions used for the prediction of HOFs are of permutation type in terms of the substituents. The HOFs increase non‐additively with increasing number of nitro groups. The attachment of the amino groups to polynitrobenzenes dramatically decreases the HOF. The HOF of hexanitrobenzene (HNB) is 344.05 kJ mol−1 at the B3LYP/6‐311+G** level. This value is much larger than that of the widely used 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB), which engenders HNB a large chemical energy of detonation. The strengths of the group interactions were analyzed according to the disproportionation energy. The nearest‐neighbor interactions in polynitrobenzenes are in the range of 27.20–55.90 kJ mol−1. The energy barrier for the internal rotation of nitro group in nitrobenzene is 24.6 kJ mol−1. However, the energy barrier for the internal rotation of 2‐position nitro group of 1,2,3‐trinitrobenzene is as large as 216.3 kJ mol−1. The chemical energies of detonation for polynitrobenzenes with three or more nitro groups are over 6000 J g−1. Pentanitroaniline and HNB have good performances in terms of detonation velocity and pressure.  相似文献   

15.
An advanced heat‐resistant fiber (trade name Ekonol) spun from a nematic liquid crystalline melt of thermotropic wholly aromatic poly(p‐oxybenzoate‐p,p′‐biphenylene terephthalate) has been subjected to a dynamic thermogravimetry in nitrogen and air. The thermostability of the Ekonol fiber has been studied in detail. The thermal degradation kinetics have been analyzed using six calculating methods including five single heating rate methods and one multiple heating rate method. The multiple heating‐rate method gives activation energy (E), order (n), frequency factor (Z) for the thermal degradation of 314 kJ mol−1, 4.1, 7.02 × 1020 min−1 in nitrogen, and 290 kJ mol−1, 3.0, 1.29 × 1019 min−1 in air, respectively. According to the five single heating rate methods, the average E, n, and Z values for the degradation were 178 kJ mol−1, 2.1, and 1.25 × 1010 min−1 in nitrogen and 138 kJ mol−1, 1.0, and 6.04 × 107 min−1 in air, respectively. The three kinetic parameters are higher in nitrogen than in air from any of the calculating techniques used. The thermostability of the Ekonol fiber is substantially higher in nitrogen than in air, and the decomposition rate in air is higher because oxidation process is occurring and accelerates thermal degradation. The isothermal weight‐loss results predicted based on the nonisothermal kinetic data are in good agreement with those observed experimentally in the literature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1923–1931, 1999  相似文献   

16.
The oxidative polycondensation reaction conditions of 4‐[(2‐mercaptophenyl) imino methyl] phenol (2‐MPIMP) were studied in an aqueous acidic medium between 40 and 90°C by using oxidants such as air, H2O2, and NaOCl. The structures of the synthesized monomer and polymer were confirmed by FTIR, 1H NMR, 13C NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(2‐mercaptophenyl) imino methyl]phenol (P‐2‐MPIMP) was found to be 92% for NaOCl oxidant, 84% for H2O2 oxidant 54% for air oxidant. According to the SEC analysis, the number‐average molecular weight (Mn), weight‐average molecular weight (Mw), and polydispersity index values of P‐2‐MPIMP were found to be 1700 g mol?1, 1900 g mol?1, and 1.118, using H2O2; 3100 g mol?1, 3400 g mol?1, and 1.097, using air; and 6750 g mol?1, 6900 g mol?1, and 1.022, using NaOCl, respectively. According to TG analysis, the weight losses of 2‐MPIMP and P‐2‐MPIMP were found to be 95.93% and 76.41% at 1000°C, respectively. P‐2‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐2‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and the electrochemical energy gaps (Eg) of 2‐MPIMP and P‐2‐MPIMP were found to be ?6.13, ?6.09; ?2.65, ?2.67; and 3.48, 3.42 eV, respectively. Kinetic and thermodynamic parameters of these compounds investigated by MacCallum‐Tanner and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), pre‐exponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) were calculated from the TGA curves of compounds. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The synergistic effect of 1‐phenyl‐3‐methyl‐4‐benzoyl‐pyrazalone‐5 (HPMBP, HA) and di‐(2‐ethylhexyl)‐2‐ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE(III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A2.B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change ΔG (?17.06 kJ mol?1), enthalpy change ΔH (?35.08 kJ mol?1) and entropy change ΔS (?60.47 J K?1 mol?1) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
Trans‐1,4,5,8‐Tetranitro‐1,4,5,8‐Tetraazadecalin (TNAD), a cyclic nitroamine, has been studied with regard to the kinetics and mechanism of thermal decomposition, using thermogravimetry (TG), IR spectroscopy, and pressure differential scanning calorimetry (PDSC). The IR spectra of TNAD have also been recorded, and the kinetics of thermolysis has been followed by non‐isothermal TG. The activation energy of the solid‐state process was determined by using the Flynn‐Wall‐Ozawa method. Compared with the activation energy obtained from the Ozawa method, the reaction mechanism of the exothermic process of TNAD was classified by the Coats‐Redfern method as a nucleation and nuclear growth (Avrami equation 1) chemical reaction (α=0.30–0.60) and a 2D diffusion (Valensi equation) chemical reaction (α=0.60–0.90). Ea and ln A were established to be 330.14 kJ mol−1 and 29.93 (α=0.30–0.60) or 250.30 kJ mol−1 and 21.62 (α=0.60–0.90).  相似文献   

19.
Reactions using the high nitrogen heterocycle 3,4,5‐triamino‐1,2,4‐triazole (guanazine) with strong acids (HNO3, HClO4, and “HN(NO2)2”) resulted in a family of highly stable salts. All of the salts were characterized using spectroscopic as well as single crystal X‐ray diffraction studies. The X‐ray structures were compared to that obtained from theoretical calculations (MP2/6‐311+G(d, p) level). Initial safety testing (impact, friction) was carried out on all of the new materials.  相似文献   

20.
The influence of annealing on mechanical αc‐relaxation of isotactic polypropylene (i PP) is investigated. In the sample without annealing, polymer chains in the intermediate phase are constrained by crystallites with a broad size distribution, leading to one αc‐relaxation peak with activation energy (E a) of 53.39 kJ mol−1. With an annealing temperature between 60 and 105 °C imperfect lamellae melting releases a part of the constraining force. Consequently, two αc‐relaxation peaks can be observed (αc1‐ and αc2‐relaxation in the order of increasing temperature). Both relaxation peaks shift to higher temperatures as annealing temperature increases. E a of αc1‐relaxation decreases from 38.43 to 35.55 kJ mol−1 as the intermediate phase thickness increases from 2.0 to 2.2 nm. With an annealing temperature higher than 105 °C, a new crystalline phase is formed, which enhances the constraining force on the polymer chains. So the αc1‐relaxation peak is broadened and its position shifts to a higher temperature. Moreover, the polymer chains between the initial and the newly formed crystalline phase are strongly confined. Therefore, the αc2‐relaxation is undetectable. E a of αc1‐relaxation decreases from 23.58 to 13.68 kJ mol−1 as the intermediate phase thickness increases from 2.3 to 3.0 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号