首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuum‐assisted resin transfer molding (VARTM) is commonly used for general temperature applications (<150 °C) such as boat hulls and secondary aircraft structures. With growing demands for applications of composites in elevated temperature environments, significant cost savings can be achieved by employing the VARTM process. However, implementation of the VARTM process for fabricating elevated temperature composites presents unique challenges such as high porosity and low fiber volume contents. In the present work, a low cost and reliable VARTM process is developed to manufacture elevated temperature composites for aerospace applications. Modified single vacuum bagging infusion and double vacuum bagging infusion processes were evaluated. Details of the method to obtain high quality composite parts and the challenging issues related to the manufacturing process are presented. Density and fiber volume fraction testing of manufactured panels showed that high quality composite parts with void content less than 1% have been consistently manufactured. A property database of the resin system and the composites was developed. A three‐dimensional mathematical model has also been developed for flow simulation and implemented in the ABAQUS finite element package code to predict the resin flow front during the infusion process and to optimize the flow parameters. The results of the present study indicate that aircraft grade composite parts with high fiber volume fractions can be manufactured using the developed elevated temperature VARTM process. © 2013 Society of Chemical Industry  相似文献   

2.
Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high‐performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through‐the‐thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet‐out and void free. A three‐dimensional finite element model was used to simulate resin infusion into the preforms. The predicted flow patterns agreed well with the flow patterns observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.  相似文献   

3.
During the vacuum‐assisted resin transfer molding (VARTM) processing, the post‐infusion behavior after complete wet‐out and before gelation of the resin is critical for the development of the thickness and fiber volume fraction distribution in the cured composite part. The pressure gradient developed during infusion results in a thickness gradient due to the flexible nature of the bagging approach. After full infusion, the resin typically bleeds into a vacuum trap, allowing redistribution of pressure and preform thickness. In this study, a non‐rigid control volume is used to formulate a set of governing equations for analysis of the post‐infusion process. The model is used to investigate the effects of processing parameters and different processing scenarios on resin flow, resin pressure, and thickness variation of the composite laminate. This work provides a tool for optimization of the VARTM process to reduce final part variability. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

4.
对Bragg光栅在VARTM成型工艺中树脂流动过程及复合材料拉伸性能测试进行了研究.实验结果表明,在树脂流动过程中,通过波长随时间的变化可确定树脂流动前沿位置.当光纤的埋入方向平行于树脂流动方向时,光纤与复合材料的相容性较好.在拉伸过程中,光栅波长的变化与外加载荷呈良好的线性关系.因此,通过光栅波长的变化可进行树脂流动过程以及复合材料承受栽荷的监测.  相似文献   

5.
For vacuum‐assisted resin transfer molding (VARTM), we propose adding a cover mold, inserted between the distribution medium and the peel ply, to achieve a higher fiber volume fraction in the final product. As the conventional VARTM process does not use a cover mold, improved processes using different rigid covers were explored. A three‐dimensional digital image correlation system was developed to monitor the thickness evolution of the vacuum package during the infusion stage. This system was validated as a full‐field displacement test. The results demonstrate that there are three advantages to using a cover mold. First, in the filling stage, a rigid cover mold can prevent shrinkage of the part at the resin flow front, and even cause slight expansion of the unsaturated part. This improves the resin flow and shortens the time required for complete infusion. Second, a cover mold can limit the amount of excess resin needed to infuse the saturated part. Third, in the postfilling stage, the cover mold can be used to accelerate extrusion of the excess resin in the package. The overall effect is to increase the fiber volume fraction in the final product. POLYM. COMPOS., 37:1435–1442, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
Vacuum Assisted Resin Transfer Molding (VARTM) has proven to be a cost effective process for manufacturing composite structures compared with prepreg/autoclave and traditional resin transfer molding (RTM) processes. However, VARTM has not been accomplished with high temperature resins (such as polyimides) until recently, primarily because no resins had low melt viscosity and long melt stability that are required by VARTM. With the recent invention of phenylethynyl terminated imides (PETIs), high temperature VARTM has been achieved. Two processing methods, in‐plane and through‐thickness resin flow, were proposed and tested. Both methods are capable of fabricating polyimide matrix composites; and the carbon fiber laminates yield good fiber‐resin interfacial bonding and comparable mechanical properties to those laminates fabricated using RTM. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
Functionally graded composites exhibit properties within the material that vary gradually without a recognizable boundary. One technique to manufacture functionally graded polymer composites is by liquid composite molding process. In this process, structural fabric layers are stacked in a closed mold and resin is injected into the mold. Particles may be added to the resin to tailor the properties of the final product. The structural fabrics typically consist of yarns or bundles of thousands of micron size fibers woven, stitched, or knitted together, which gives rise to a bimodal distribution of pore sizes; the larger pores in between the bundles and smaller ones within the bundles. The filtration process that takes place during infusion alters the flow resistance of the porous media and complicates the impregnation process. In this study, a vacuum‐assisted resin transfer molding (VARTM) process‐based approach is presented that enables functional grading in composites to obtain a desired distribution in properties. A model of the filtration phenomenon is proposed to predict the concentration distribution of particles within the dual scale fibrous porous media infused under a constant pressure drop. The approach uses Darcy's law and accounts for lowering of the permeability value due to the particle entrapment in the available pores. Experiments are conducted and the concentration of the particles in the fabric is measured. The results compare well with the predictions despite many assumptions made in the model. Nondimensional analysis and parametric study reveals the influence of critical parameters on the final particles concentration gradient. POLYM. COMPOS. 27:570–581, 2006. © 2006 Society of Plastics Engineers  相似文献   

8.
Vacuum assisted resin transfer molding (VARTM) offers numerous advantages over traditional resin transfer molding, such as lower tooling costs, shorter mold filling time and better scalability for large structures. In the VARTM process, complete filling of the mold with adequate wet-out of the fibrous preform has a critical impact on the process efficiency and product quality. Simulation is a powerful tool for understanding the resin flow in the VARTM process. However, conventional three-dimensional Control Volume/Finite Element Method (CV/FEM) based simulation models often require extensive computations, and their application to process modeling of large part fabrication is limited. This paper introduces a new approach to model the flow in the VARTM process based on the concept of equivalent permeability to significantly reduce computation time for VARTM flow simulation of large parts. The equivalent permeability model of high permeable medium (HPM) proposed in the study can significantly increase convergence efficiency of simulation by properly adjusting the aspect ratio of HPM elements. The equivalent permeability model of flow channel can simplify the computational model of the CV/FEM simulation for VARTM processes. This new modeling technique was validated by the results from conventional 3D computational methods and experiments. The model was further validated with a case study of an automobile hood component fabrication. The flow simulation results of the equivalent permeability models were in agreement with those from experiments. The results indicate that the computational time required by this new approach was greatly reduced compared to that by the conventional 3D CV/FEM simulation model, while maintaining the accuracy, of filling time and flow pattern. This approach makes the flow simulation of large VARTM parts with 3D CV/FEM method computationally feasible and may help broaden the application base of the process simulation. Polym. Compos. 25:146–164, 2004. © 2004 Society of Plastics Engineers.  相似文献   

9.
Vacuum assisted resin transfer molding (VARTM) is one of the promising manufacturing techniques for large‐scaled composite components with complex geometry, such as yachts or fishing vessels. To reduce the failure risk of production, numerical simulation of resin infusion process before manufacture is helpful. In general, basic characteristics of perform, such as permeability, need to be measured by experiments in practice. However, this experimental approach sometimes may be costly because specific types of fibers as well as preform with different layer numbers need individual experiments. This study first introduces the experimental procedure of measuring the permeability of reinforcements via Darcy's Law. On the basis of experimental observation of permeability of different layer order, we assumed that the change of the permeability in different experiments is mainly affected by the space provided by the fiber. Accordingly, an efficient prediction method based on the idea of “total porous space of the reinforcement” is proposed. It is shown that this method can give reference between prediction and experiments of the mat/roving fiber preform. Though the resin flowing is complex, this prediction gives a simple, macroscopic reference way for the injection characteristic of large‐sized ships, and consequently facilitates the numerical design work of composite structures manufactured by VARTM technique. POLYM. COMPOS., 27:665–670, 2006. © 2006 Society of Plastics Engineers  相似文献   

10.
黄明  祖韵秋  高亢  韦韡  张娜  朱华平  刘春太 《化工进展》2022,41(5):2546-2554
汽车轻量化是全球面临的共同问题,采用更具成本优势的大丝束碳纤维(CF)增强复合材料是实现汽车轻量化结构化的重要途径。然而,大丝束碳纤维在液体成型时,单束过多的纤维丝易导致纤维束内微观浸润困难,易产生干斑、气泡等缺陷。同时,传统的汽车电泳烘干工艺对复合材料的高温性能提出了挑战。鉴于此,本文采用0°/90°双轴向缝编大丝束碳纤布和耐高温环氧树脂(EP),开展了纤维渗透率测试和汽车地板真空辅助树脂传递成型(VARTM)模拟优化研究,设计、制造了成型模具,成功试制出汽车地板样件,超景深显微镜观测显示纤维束内和层间浸润良好,无明显缺陷。高温在线拉伸和应变测试显示,温度对材料拉伸模量影响显著而对强度影响不大,180℃高温下应变恢复能力良好,表明该材料在高温下仍具备较好的强度和抗蠕变性能,该结果对指导复合材料能否通过传统汽车的电泳烘干工艺具有重要意义。  相似文献   

11.
A low cost composite fabrication process—tackified SCRIMP—is described for fabricating aerospace‐grade composites based on tackification and vacuum‐assisted resin transfer molding (VARTM). Tackification based on a commercial tackifier (FT 500 from 3M) was used to make the net‐shape fiber preform. It was found that tackifier concentration and application conditions play important roles in governing the moldability of tackified fiber preforms. An epoxy resin (PR 500 from 3M) was used in the VARTM process‐SCRIMP at high temperatures. Experimental results show that composites with high fiber content (> 60% by volume) can be manufactured at low cost using tackification. Effects of tackification methods on composite dimension control, void content and mechanical properties were investigated and compared in both RTM and SCRIMP.  相似文献   

12.
《Polymer Composites》2017,38(10):2192-2200
The present investigation is focused to study the permeability of natural fiber during vacuum infusion (VI) process and the effect of the surface treatments of natural fiber, fiber loading direction, resin flow direction and process parameter on the tensile properties of developed composites (sisal/bio based epoxy). The bio based resin exhibits good flow characteristics in NaOH and isocyanate treated fibers which may be attributed to change in polarity. The surface treatments appear to provide an appreciable enhancement in tensile strength through enhanced bonding between fiber and matrix. The longitudinal tensile strength has been found to be higher than that of the transverse direction and the flow along the fiber provides maximum tensile strength. It has also been demonstrated that VI process provides improved mechanical properties as compared to hand‐layup process. Morphological studies of fractured developed composites were performed by scanning electron microscopy (SEM) to understand the de‐bonding of fiber/matrix adhesion. POLYM. COMPOS., 38:2192–2200, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Composite manufacturing by Liquid Composite Molding (LCM) processes such as Resin Transfer Molding involve the impregnation of a net‐shape fiber reinforcing perform a mold cavity by a polymeric resin. The success of the process and part manufacture depends on the complete impregnation of the dry fiber preform. Race tracking refers to the common phenomenon occurring near corners, bends, airgaps and other geometrical complexities involving sharp curvatures within a mold cavity creating fiber free and highly porous regions. These regions provide paths of low flow resistance to the resin filling the mold, and may drastically affect flow front advancement, injection and mold pressures. While racetracking has traditionally been viewed as an unwanted effect, pre‐determined racetracking due to flow channels can be used to enhance the mold filling process. Advantages obtained through controlled use of racetracking include, reduction of injection and mold pressures required to fill a mold, for constant flow rate injection, or shorter mold filling times for constant pressure injection. Flow channels may also allow for the resin to be channeled to areas of the mold that need to be filled early in the process. Modeling and integration of the flow channel effects in the available LCM flow simulations based on Darcian flow equations require the determination of equivalent permeabilities to define the resistance to flow through well‐defined flow channels. These permeabilities can then be applied directly within existing LCM flow simulations. The present work experimentally investigates mold filling during resin transfer molding in the presence of flow channels within a simple mold configuration. Experimental flow frot and pressure data measurements are employed to experimentally validate and demonstrate the positive effect of flow channels. Transient flow progression and pressure data obtained during the experiments are employed to investigate and validate the analytical predictions of equivalent permeability for a rectangular flow channel. Both experimental data and numerical simulations are presented to validate and characterize the equivalent permeability model and approach, while demonstrating the role of flow channels in reducing the injection and mold pressures and redistributing the flow.  相似文献   

14.
采用真空辅助树脂转移模塑(VARTM)技术制备了环氧树脂/碳纤维(EP/CF)和环氧树脂/碳纤维/玻璃纤维毡(EP/CF/GF)复合材料。测试了两种纤维铺层方式中树脂流动距离的平方与流动时间的关系,对两种铺层纤维体系的渗透率进行了研究对比;将两种复合材料进行高温处理,并且对其高温处理前后的力学性能进行分析;利用扫描电子显微镜(SEM)观察了复合材料的拉伸断口形貌。结果表明,EP/CF/GF中GF毡的松散结构使树脂更易流动;高温热处理造成了EP/CF弹性模量和拉伸应变的降低,其中弹性模量降低了9.97 %、拉伸应变降低了11.36 %,但对EP/CF/GF的影响较小;GF毡的加入造成了2种复合材料弯曲性能的下降;未经处理的复合材料断口表面光滑,而热处理后的复合材料断口表面粗糙且有大量基体附着。  相似文献   

15.
As vacuum‐assisted resin transfer molding (VARTM) is being increasingly used in aerospace applications, the thickness gradient and variation issues are gaining more attention. Typically, thickness gradient and variations result from the infusion pressure gradient during the process and material variations. Pressure gradient is the driving force for resin flow and the main source of thickness variation. After infusion, an amount of pressure gradient is frozen into the preform, which primarily contributes to the thickness variation. This study investigates the mechanism of the thickness variation dynamic change during the infusion and relaxing/curing processes. A numerical model was developed to track the thickness change of the bagging film free surface. A time‐dependent permeability model as a function of compaction pressure was incorporated into an existing resin transfer molding (RTM) code for obtaining the initial conditions for relaxing/curing process. Control volume (CV) and volume of fluid (VOF) methods were combined to solve the free surface problem. Experiments were conducted to verify the simulation results. The proposed model was illustrated with a relatively complex part. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
The resin film infusion process (RFIP), which is similar to resin transfer molding (RTM), was applied to investigate the possibility of manufacturing high performance stitched composites. With the objective of understanding the resin flow mechanisms and void formation in stitched fibrous perform, two recent technological developments in homogeneous tough resin and bendable stitching fibers were incorporated in producing stituched composites with RFIP. These included new lightly crosslinked thermosets (LXT) that were phenolic or amine based. Second, bendable carbon stitching reinforcement (T-900) was utilized as a stitching fiber. Flow characteristics were inferred by ultrasonic C-scan analysis of cured panels. Microscopic studies indicated that voids were distrubuted along the stitching fiber because of low consolidation pressure in the resin-rich area (stitching fiber region) where the fiber volume content was lower. In contrast to stitched composites, non-sitiched composites contained lower void content and irregular void distribution because of uniform fiber compaction. Microscopic studies of partially resin infused quasi-istropic stitched composites demonstrated that the resin flows along the stitching fiber region and then infuses into the fibrous preform. These infusion phebnomena were the result of anistropic permeability in the preform. Consequently, anisotropic resin flow in the stitched fibrous preform was found to be related to the heterogenous textile structure caused by the stitching process.  相似文献   

17.
In resin transfer molding processes, the edge effect caused by the nonuniformity of permeability between fiber preform and edge channel may disrupt resin flow patterns and often results in the incomplete wetting of fiber preform, the formation of dry spots, and other defects in final composite materials. So a numerical simulation algorithm is developed to analyze the complex mold‐filling process with edge effect. The newly modified governing equations involving the effect of mold cavity thickness on flow patterns and the volume‐averaging momentum equations containing viscous and inertia terms are adopted to describe the fluid flow in the edge area and in the fiber preform, respectively. The volume of fluid (VOF) method is applied to tracking the free interface between the two types of fluids, namely the resin and the air. Under constant pressure injection conditions, the effects of transverse permeability, edge channel width, and mold cavity thickness on flow patterns are analyzed. The results demonstrate that the transverse flow is not only affected by the transverse permeability and the edge channel width but also by the mold cavity thickness. The simulated results are in agreement with the experimental results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Through‐thickness measurements were recorded to experimentally investigate the through thickness flow and to validate a closed form solution of the resin flow during the vacuum assisted resin transfer molding process (VARFM). During the VART'M process, a highly permeable distribution medium is incorporated into the preform as a surface layer and resin is inftised Into the mold, under vacuum. During Infusion, the resin flaws preferentially across the surface and simultaneously through the thickness of the preform, giving rise to a three dimensional‐flow front. The time to fill the mold and the shape of the flow front, which plays a key role in dry spot formation, are critical for the optimal manufacture of large composite parts. An analytical model predicts the flow times and flow front shapes as a function of the properties of the preform, distribution media and resin. It was found that the flow front profile reaches a parabolic steady state shape and the length of the region saturated by resin is proportional to the square root of the time elapsed. Experimental measurements of the flow front in the process were carried out using embedded sensors to detect the flow of resin through the thickness of the preform layer and the progression of flow along the length of the part. The time to fill the part, the length of flow front and its shapes show good agreement between experiments and the analytical model. The experimental study demonstrates the need for control and optimization of resin injection during the manufacture of large parts by VARTM.  相似文献   

19.
雷波  周持兴  俞炜  张羽  周华  王健 《化工学报》2012,63(3):775-780
沟槽型真空辅助树脂传递模塑成型工艺(VARTM)是一种新型的泡沫夹芯结构板成型方法,利用实验探明了泡沫夹芯结构板芯材上不可渗泡沫壁流道内的流动行为。实验结果表明,液体在泡沫壁流道的流动能力大幅降低,只有光滑壁流道的60%左右,泡沫壁流道的粗糙内表面是造成这种现象的主要原因。提出了相应的压力驱动流动方程,并采用等效渗透率来表征液体在泡沫壁流道内的流动能力,得到了考虑粗糙表面影响的等效渗透率计算公式,提出了一个正确计算不可渗泡沫壁流道内流动的处理方法。  相似文献   

20.
A systematic study was carried out to investigate the effect of alkali treatment and nanoclay on thermomechanical properties of jute fabric reinforced polyester composites (JPC) fabricated by the vacuum‐assisted resin transfer molding (VARTM) process. Using mechanical mixing and sonication process, 1% and 2% by weight montmorillonite K10 nanoclay were dispersed into B‐440 premium polyester resin to fabricate jute fabric reinforced polyester nanocomposites. The average fiber volume was determined to be around 40% and void fraction was reduced due to the surface treatment as well as nanoclay infusion in these biocomposites. Dynamic mechanical analysis (DMA) revealed enhancement of dynamic elastic/plastic responses and glass transition temperature (Tg) in treated jute polyester composites (TJPC) and nanoclay infused TJPC compared with those of untreated jute polyester composites (UTJPC). Alkali treatment and nanoclay infusion also resulted in enhancement of mechanical properties of JPC. The maximum flexural, compression, and interlaminar shear strength (ILSS) properties were found in the 1 wt % nanoclay infused TJPC. Fourier transform‐infrared spectroscopy (FT‐IR) revealed strong interaction between the organoclay and polyester that resulted in enhanced thermomechanical properties in the composites. Lower water absorption was also observed due to surface treatment and nanoclay infusion in the TJPC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号