首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
IEEE 802.11, the standard of wireless local area networks (WLANs), allows the coexistence of asynchronous and time-bounded traffic using the distributed coordination function (DCF) and point coordination function (PCF) modes of operations, respectively. In spite of its increasing popularity in real-world applications, the protocol suffers from the lack of any priority and access control policy to cope with various types of multimedia traffic, as well as user mobility. To expand support for applications with quality-of-service (QoS) requirements, the 802.11E task group was formed to enhance the original IEEE 802.11 medium access control (MAC) protocol. However, the problem of choosing the right set of MAC parameters and QoS mechanism to provide predictable QoS in IEEE 802.11 networks remains unsolved. In this paper, we propose a polling with nonpreemptive priority-based access control scheme for the IEEE 802.11 protocol. Under such a scheme, modifying the DCF access method in the contention period supports multiple levels of priorities such that user handoff calls can be supported in wireless LANs. The proposed transmit-permission policy and adaptive bandwidth allocation scheme derive sufficient conditions such that all the time-bounded traffic sources satisfy their time constraints to provide various QoS guarantees in the contention free period, while maintaining efficient bandwidth utilization at the same time. In addition, our proposed scheme is provably optimal for voice traffic in that it gives minimum average waiting time for voice packets. In addition to theoretical analysis, simulations are conducted to evaluate the performance of the proposed scheme. As it turns out, our design indeed provides a good performance in the IEEE 802.11 WLAN's environment, and can be easily incorporated into the hybrid coordination function (HCF) access scheme in the IEEE 802.11e standard.  相似文献   

2.
The complementary characteristics of wireless local area networks (WLANs) and wideband code division multiple access (CDMA) cellular networks make it attractive to integrate these two technologies. How to utilize the overall radio resources optimally in this heterogeneous integrated environment is a challenging issue. This paper proposes an optimal joint session admission control scheme for multimedia traffic that maximizes overall network revenue with quality of service (QoS) constraints over both WLANs and CDMA cellular networks. WLANs operate under IEEE 802.11e medium access control (MAC) protocol, which supports QoS for multimedia traffic. A cross-layer optimization approach is used in CDMA networks taking into account both physical layer linear minimum mean square error (LMMSE) receivers and network layer QoS requirements. Numerical examples illustrate that the network revenue earned in the proposed joint admission control scheme is significantly more than that when the individual networks are optimized independently.  相似文献   

3.
A survey of quality of service in IEEE 802.11 networks   总被引:9,自引:0,他引:9  
Developed as a simple and cost-effective wireless technology for best effort services, IEEE 802.11 has gained popularity at an unprecedented rate. However, due to the lack of built-in quality of service support, IEEE 802.11 experiences serious challenges in meeting the demands of multimedia services and applications. This article surveys 802.11 QoS schemes, including service differentiation in the MAC layer, admission control and bandwidth reservation in MAC and higher layers, and link adaptation in the physical layer, designed to meet these challenges by providing the necessary enhancements for the required QoS. Furthermore, the article addresses issues that arise when end-to-end QoS has to be guaranteed in today's pervasive heterogeneous wired-cum-wireless networks. Among these challenges, protocol interoperability, multihop scheduling, full mobility support, and seamless vertical handoff among multiple mobile/wireless interfaces are specifically addressed.  相似文献   

4.
We present a system for real‐time traffic support in infrastructure and ad hoc IEEE 802.11 networks. The proposed elastic MAC (E‐MAC) protocol provides a distributed transmission schedule for stations with real‐time traffic requirements, while allowing a seamless coexistence with standard IEEE 802.11 clients, protecting best‐effort 802.11 traffic from starvation by means of admission control policies. Our scheduling decisions are based on an ‘elastic’ transmission opportunity (TXOP) assignment which allows for efficient wireless resource usage: whenever a real‐time station does not use the assigned TXOP, the other real‐time stations can take over the unused access opportunity, thus preventing the well‐known inefficiencies of static time division multiple access (TDMA) schemes. Unlike other TDMA‐based solutions for 802.11, E‐MAC does not require a tight synchronization among the participating clients, thus allowing its implementation on commodity WLAN hardware via minor software changes at the client side, and no changes at the access points (APs). We studied the performance of our mechanism via ns‐2 simulations and a mathematical model, showing that it outperforms IEEE 802.11e in terms of throughput, delay, and jitter. We finally provide a proof of concept through the results obtained in a real testbed where we implemented the E‐MAC protocol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
IEEE 802.11e enhanced distributed channel access (EDCA) is a distributed medium access scheme based on carrier sense multiple access with collision avoidance (CSMA/CA) protocol. In this paper, a model-based admission control (MBAC) scheme that performs real-timely at medium access control (MAC) layer is proposed for the decision of accepting or rejecting requests for adding traffic streams to an IEEE 802.11e EDCA wireless local area network (WLAN). The admission control strategy is implemented in access point (AP), which employs collision probability and access delay measures from active flows to estimate throughput and packet delay of each traffic class by the proposed unsaturation analytical model. Simulation results prove accuracy of the proposed analytical model and effectiveness of MBAC scheme.  相似文献   

6.
Recent years have seen greatly increasing interests in voice over IP in wireless LANs, in which the IEEE 802.11 distributed coordination function protocol or enhanced DCF protocol is used. However, since both DCF and EDCF are contention-based medium access control protocols, it is difficult for them to support the strict QoS requirement for VoIP. Therefore, in this article we propose a novel call admission control scheme that runs at the MAC layer to support VoIP services. The call admission control mechanism regulates voice traffic to efficiently coordinate medium contention among voice sources. The rate control mechanism regulates non-voice traffic to control its impact on the performance of voice traffic. Extensive simulations demonstrate that the proposed schemes can well support statistical QoS guarantees for voice traffic and maintain stable high throughput for non-voice traffic at the same time.  相似文献   

7.
IEEE 802.11 is one of the most influential wireless LAN (WLAN) standards. Point coordination function (PCF) is its medium access control (MAC) protocol with real‐time traffic (rt‐traffic) quality‐of‐service (QoS) guarantees. In PCF, it is very likely that non‐real‐time traffic (nrt‐traffic) will use the contention free period (CFP) that should be dedicated to traffic having higher priority such as rt‐traffic. Therefore, a modified PCF protocol called MPCF, which is based on hub polling and an integrated QoS differentiation, is presented in this paper. With the integrated QoS differentiation, MPCF can prioritize bandwidth requests according to service classes and QoS requirements. With hub polling, MPCF can reduce the bandwidth for control frames and improve the network throughput. A simple and accurate analytical model is derived and presented in this paper to calculate the system throughput of MPCF. Simulation results show that MPCF protocol is much better than PCF in terms of system capacity and rt‐traffic QoS guarantees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers optimizing the utilization of radio resources in a heterogeneous integrated system consisting of two different networks: a wireless local area network (WLAN) and a wideband code division multiple access (CDMA) network. We propose a joint session admission control scheme for multimedia traffic that maximizes overall network revenue with quality of service (QoS) constraints over both the WLAN and the CDMA cellular networks. The WLAN operates under the IEEE 802.11e medium access control (MAC) protocol, which supports QoS for multimedia traffic. A novel concept of effective bandwidth is used in the CDMA network to derive the unified radio resource usage, taking into account both physical layer linear minimum mean square error (LMMSE) receivers and characteristics of the packet traffic. Numerical examples illustrate that the network revenue earned in the proposed joint admission control scheme is significantly larger than that when the individual networks are optimized independently with no vertical handoff between them. The revenue gain is also significant over the scheme in which vertical handoff is supported, but admission control is not done jointly. Furthermore, we show that the optimal joint admission control policy is a randomized policy, i.e., sessions are admitted to the system with probabilities in some states  相似文献   

9.
One of the challenges that must be overcome to realize the practical benefits of ad hoc networks is quality of service (QoS). However, the IEEE 802.11 standard, which undeniably is the most widespread wireless technology of choice for WLANs and ad hoc networks, does not address this issue. In order to support applications with QoS requirements, the upcoming IEEE 802.11e standard enhances the original IEEE 802.11 MAC protocol by introducing a new coordination function which has both contention-based and contention-free medium access methods. In this paper, we consider the contention-based medium access method, the EDCA, and propose an extension to it such that it can be used to provide QoS guarantees in WLANs operating in ad hoc mode. Our solution is fully distributed, uses admission control to regulate the usage of resources and gives stations with high-priority traffic streams an opportunity to reserve time for collision-free access to the medium.  相似文献   

10.
QoS-aware routing based on bandwidth estimation for mobile ad hoc networks   总被引:17,自引:0,他引:17  
Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.  相似文献   

11.
The admission control algorithm that can be performed at the MAC (Medium Access Control) layer in a real-time is proposed for the decision for accepting or rejecting the requests for adding traffic streams to an IEEE 802.11e wireless LAN (Local Area Network). In numerical examples, we apply the proposed admission control algorithm to VOIP (Voice Over Internet Protocol) traffic streams, and obtain the maximum numbers of VOIP traffic streams that can be admitted to IEEE 802.11a/e, IEEE 802.11b/e and IEEE 802.11g/e wireless LANs for various delay requirements.  相似文献   

12.
IEEE 802.11e supports the guaranteed quality of service (QoS) by providing different transmission priorities. IEEE 802.11e improves the media access control layer of IEEE 802.11 to satisfy the different QoS requirements by introducing two channel access functions: the enhanced distributed channel access (EDCA) and the hybrid coordination function (HCF) controlled channel access (HCCA). Signal quality may affect the available bandwidth and transmission rate, because the characteristic of communication channel in wireless environment is in random time‐variation manner. Generally a station using a lower transmission rate will occupy communication channel for a longer time and degrade system performance, which causes unfairness and cannot provide the guaranteed QoS for the stations with higher transmission rates. We propose a bandwidth control scheme (BCS) by combining the IEEE 802.11e enhanced distributed channel access function (EDCAF) protocol to overcome the guaranteed bandwidth issue in multirate environments. A multirate discrete Markov chain model is analyzed for the multirate transmission system in this paper. According to the obtained results, BCS improves performance especially in throughput and makes the different QoS requirements be processed efficiently and flexibly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Quality‐of‐service (QoS) is a key problem of today's IP networks. Many frameworks (IntServ, DiffServ, MPLS etc.) have been proposed to provide service differentiation in the Internet. At the same time, the Internet is becoming more and more heterogeneous due to the recent explosion of wireless networks. In wireless environments, bandwidth is scarce and channel conditions are time‐varying and sometimes highly lossy. Many previous research works show that what works well in a wired network cannot be directly applied in the wireless environment. Although IEEE 802.11 wireless LAN (WLAN) is the most widely used IEEE 802.11 wireless LAN (WLAN) standard today, it cannot provide QoS support for the increasing number of multimedia applications. Thus, a large number of 802.11 QoS enhancement schemes have been proposed, each one focusing on a particular mode. This paper summarizes all these schemes and presents a survey of current research activities. First, we analyze the QoS limitations of IEEE 802.11 wireless MAC layers. Then, different QoS enhancement techniques proposed for 802.11 WLAN are described and classified along with their advantages/drawbacks. Finally, the upcoming IEEE 802.11e QoS enhancement standard is introduced and studied in detail. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
WLAN中基于效用的呼叫接纳控制策略   总被引:3,自引:1,他引:2       下载免费PDF全文
陈明欣  刘干  朱光喜 《电子学报》2008,36(7):1429-1434
 为了在802.11的网络中提供服务质量(QoS)支持,IEEE 802.11 Task Group E提出了EDCF协议.然而EDCF只能提供业务区分服务,并不能提供服务质量(QoS)保证.为了能在重负载下提供QoS保证,在WLAN中加入呼叫接纳控制(CAC)机制是非常必要的.本文首先提出了一个新的3维Markov模型对非饱和状态下EDCF的吞吐量和平均接入时延进行了分析.并在此基础上,提出了一种基于效用函数的CAC策略,它可以使网络的总收益达到最大.最后通过大量仿真验证了所提出的CAC策略的有效性.  相似文献   

15.
这篇文章提出了能够有效支持QoS的IEEE802.11自适应调度器模型。和以往的支持QoS的调度器模型相比,这里根据在主控接入点(MAP:Master Access Point)和用户终端(UT:User Termination)的各自延时需求对满足不同的传输机制的分组流进行自适应调度。这种机制不仅完全兼容当前支持QoS的IEEE802.11MAC协议标准,而且能够有效减少由于实时传输带来的分组延时,增加满足不同信道负载和带宽要求的数据流的吞吐率。实时测试得到的数据基本验证了这个要求。  相似文献   

16.
The enhanced distributed channel access (EDCA) mechanism has been adopted by both the IEEE 802.11e standard and the Multiband OFDM Alliance (MBOA) for quality of service (QoS) provisioning in high speed wireless LANs and UWB-based wireless PANs. Based on an analytical model of EDCA, this paper presents an optimal solution to providing maximum system throughput while maintaining the service differentiation among traffic classes. Contention window sizes are adapted to achieve throughput optimization according to the throughput ratio and number of active stations of each traffic class. To overcome the difficulty of accurate estimation of the number of competing stations we propose to use the method of subrange partitioning. An admission control scheme is also discussed. Simulation results demonstrate the effectiveness of the proposed MAC optimization framework.  相似文献   

17.
IEEE 802.11e standard is a concrete attempt to QoS challenge, but when the volume of traffic flows increases, this approach is not sufficient. Several techniques have been developed to improve WLAN QoS performance, mainly introducing a trade-off between performance and standard compatibility. This work describes the techniques used to enhance EDCA efficiency by suitably regulating standard’s parameters and it introduces an innovative algorithm, named Dynamic TXOP (DTXOP), capable of enhancing fairness between upstream and downstream resource allocation in Wi-Fi networks. Finally, after a brief review of admission control algorithms for QoS support under heavy traffic loads, a suitable admission control scheme is integrated with DTXOP as a possible solution for facing QoS degradation of active sources due to an excessive network load. The benefits obtained by integrating DTXOP and the proposed admission control policy are shown in terms of QoS enhancement and efficiency in resource allocation.  相似文献   

18.
In order to support the quality‐of‐service (QoS) requirements for real‐time traffic over broadband wireless networks, advanced techniques such as space‐time diversity (STD) and multicarrier direct‐sequence code division multiple access (MC‐DS‐CDMA) are implemented at the physical layer. However, the employment of such techniques evidently affects the QoS provisioning algorithms at the medium access control (MAC) layer. In this paper, we propose a space‐time infrastructure and develop a set of cross‐layer real‐time QoS‐provisioning algorithms for admission control, scheduling, and subchannel‐allocations. We analytically map the parameters characterizing the STD onto the admission‐control region guaranteeing the real‐time QoS. Our analytical analyses show that the proposed algorithms can effectively support real‐time QoS provisioning. Also presented are numerical solutions and simulation results showing that the STD can significantly improve the QoS provisioning for real‐time services over wireless networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Distributed mechanisms for quality of service in wireless LANs   总被引:6,自引:0,他引:6  
Wireless local area networks are gaining popularity at an unprecedented rate, at home, at work, and in public hot spot locations. As these networks become ubiquitous and an integral part of the infrastructure, they will increasingly be used for multimedia applications. There is limited QoS support in WLANs, which will become an impediment in deploying multimedia applications. We present a tutorial on QoS support in IEEE 802.11 WLANs with a focus on the distributed MAC protocol of 802.11. Most QoS support mechanisms proposed for 802.11 use well-known techniques such as priority assignment and fair scheduling, and map QoS metrics into some existing 802.11 MAC parameter, thereby avoiding a redesign of the MAC protocol. We provide a taxonomy of the mechanisms and describe the essential concepts, problems, and advantages of each mechanism. From our study, we conclude that choosing the right set of MAC parameters and the QoS mechanism itself to provide predictable QoS in 802.11 networks is still an open problem.  相似文献   

20.
The emerging IEEE 802.11p standard adopts the enhanced distributed channel access (EDCA) mechanism as its Media Access Control (MAC) scheme to support quality-of-service (QoS) in the rapidly changing vehicular environment. While the IEEE 802.11 protocol family represents the dominant solutions for wireless local area networks, its QoS performance in terms of throughput and delay, in the highly mobile vehicular networks, is still unclear. To explore an in-depth understanding on this issue, in this paper, we develop a comprehensive analytical model that takes into account both the QoS features of EDCA and the vehicle mobility (velocity and moving directions). Based on the model, we analyze the throughput performance and mean transmission delay of differentiated service traffic, and seek solutions to optimally adjust the parameters of EDCA towards the controllable QoS provision to vehicles. Analytical and simulation results are given to demonstrate the accuracy of the proposed model for varying EDCA parameters and vehicle velocity and density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号