首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Fiber-metal laminates (FMLs) are structural composites developed for aeronautical applications. The application of FMLs to structures demands a deep knowledge of a wide set of properties, including fracture toughness. The objective of this work was to evaluate the effect of crack orientation on the fracture toughness (critical J-integral and CTOD δ5) of unidirectional FMLs. Small C(T) and SE(B) specimens with notches parallel and perpendicular to the fibers direction were tested. A study of the relation and equivalence between JC and δ5C, which heavily depend on the yield strength and on the stress state, was performed motivated by apparently contradictory experimental results. These results can be explained by the direction-dependent yielding properties of unidirectional FMLs. The best overall equivalence between JC and δ5C was obtained considering plane stress state and using the effective yield strength, both for unidirectional FMLs notched parallel and perpendicular to the fibers direction.  相似文献   

2.
Recently released, BS 8571:2014 standard offers an alternative for the experimental determination of fracture toughness and resistance curves of metallic materials from SE(T) specimens. Similar in stress conditions and constraint to cracked tubes, specimens in SE(T) geometry should yield less conservative toughness values than conventional high‐constraint specimens, such as SE(B) geometry. However, the convention to determine the J‐integral fracture toughness proposed in the new BS standard is different from ASTM standards. In this work, SE(T) and SE(B) specimens of similar dimensions of a tough high‐strength seamless pipe steel were tested following the BS 8571:2014 and ASTM E1820‐16 standards, respectively. Because of the different standardized definitions, SE(T) specimens yield lower fracture toughness than SE(B) specimens, which could lead to more conservative results in structural integrity analysis. This investigation also suggests the introduction of the blunting line concept in the BS 8571:2014 standard in order to minimize this problem.  相似文献   

3.
Single edge-notched bend (SENB) specimens containing shallow cracks (a/W < 0.2) are commonly employed for fracture testing of ferritic materials in the lower-transition region where extensive plasticity (but no significant ductile crack growth) precedes unstable fracture. Critical J-values J c ) for shallow crack specimens are significantly larger (factor of 2–3) than the J c )-values for corresponding deep crack specimens at identical temperatures. The increase of fracture toughness arises from the loss of constraint that occurs when the gross plastic zones of bending impinge on the otherwise autonomous crack-tip plastic zones. Consequently, SENB specimens with small and large a/W ratios loaded to the same J-value have markedly different crack-tip stresses under large-scale plasticity. Detailed, plane-strain finite-element analyses and a local stress-based criterion for cleavage fracture are combined to establish specimen size requirements (deformation limits) for testing in the transition region which assure a single parameter characterization of the crack-tip stress field. Moreover, these analyses provide a framework to correlate J c )-values with a/W ratio once the deformation limits are exceeded. The correlation procedure is shown to remove the geometry dependence of fracture toughness values for an A36 steel in the transition region across a/W ratios and to reduce the scatter of toughness values for nominally identical specimens.  相似文献   

4.
ABSTRACT The aim of this work is to propose procedures for the measurement of the fracture toughness of fibre metal laminates (FMLs) reinforced with unidirectional fibres of aramid or glass. Experimental techniques for fracture toughness evaluation by using Compact (C(T)) and Single‐Edge Bend (SE(B)) specimens obeying ASTM standards are introduced. Procedures from the standard for thick metallic materials were modified in order to overcome problems, which can arise when testing FMLs – that is, specimen buckling, indentations and crack growth in planes other than the plane of the fatigue pre‐crack or notch. The methodology proposed was experimentally tested leading to satisfactory results.  相似文献   

5.
This work examines the effect of weld strength mismatch on fracture toughness measurements defined by J and CTOD fracture parameters using single edge notch bend (SE(B)) specimens. A central objective of the present study is to enlarge on previous developments of J and CTOD estimation procedures for welded bend specimens based upon plastic eta factors (η) and plastic rotational factors (r p ). Very detailed non-linear finite element analyses for plane-strain models of standard SE(B) fracture specimens with a notch located at the center of square groove welds and in the heat affected zone provide the evolution of load with increased crack mouth opening displacement required for the estimation procedure. One key result emerging from the analyses is that levels of weld strength mismatch within the range ±20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens with relatively large weld grooves. The present study provides additional understanding on the effect of weld strength mismatch on J and CTOD toughness measurements while, at the same time, adding a fairly extensive body of results to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.  相似文献   

6.
This work focuses on an evaluation procedure to determine the elastic?Cplastic J-integral and Crack Tip Opening Displacement (CTOD) fracture toughness based upon the ??-method for C(T) fracture specimens made of homogeneous and welded steels. The primary objective of this investigation is to enlarge on previous developments of J and CTOD estimation procedures for this crack configuration while, at the same time, addressing effects of strength mismatch on the plastic ??-factors. The present analyses enable the introduction of a larger set of factors ?? for a wide range of crack sizes (as measured by the a/W-ratio) and material properties, including different levels of weld strength mismatch, applicable to pipeline and pressure vessel steels. Very detailed non-linear finite element analyses for plane-strain and 3-D models of C(T) fracture specimens with centerline-cracked welds provide the evolution of load with increased load-line and crack mouth opening displacement required for the estimation procedure. Overall, the present study, when taken together with previous investigations, provides a fairly extensive body of results to determine parameters J and CTOD for different materials using C(T) specimens with varying overmatch conditions.  相似文献   

7.
Based on extensive two‐dimensional (2D) finite element (FE) analyses, the present work provides the plastic η factor solutions for fracture toughness J‐integral testing of heterogeneous specimens with weldments. Solutions cover practically interesting ranges of strength mismatch and relative weld width, and are given for three typical geometries for toughness testing: a middle cracked tension (M(T)) specimen, single edge cracked bend (SE(B)) specimen and (C(T)) specimen. For mismatched M(T) specimens, both plane strain and plane stress conditions are considered, whereas for SE(B) and C(T) specimens, only the plane strain condition is considered. For all cases, only deep cracks are considered, and an idealized butt weld configuration is considered, where the weld metal strip has a rectangular cross section. Based on the present solutions for the strength mismatch effect on plastic η factors, a window is provided, within which the homogeneous J estimation procedure can be used for weldment toughness testing. The effect of the weld groove configuration on the plastic η factor is briefly discussed, concluding the need for further systematic analysis to provide guidance to practical toughness testing.  相似文献   

8.
For many years, a two‐parameter fracture criterion (TPFC) has been used to correlate and predict failure loads on cracked metallic fracture specimens. The current study was conducted to evaluate the use of the TPFC on a high‐strength aluminium alloy, using elastic‐plastic finite‐element (FE) analyses with the critical crack‐tip‐opening angle (CTOA) fracture criterion. In 1966, Forman generated fracture data on middle‐crack tension, M(T), specimens made of thin‐sheet 7075‐T6 aluminium alloy, which is a quasi‐brittle material. The fracture data included a wide range of specimen half‐widths (w) ranging from 38 to 305 mm. A two‐dimensional FE analysis code (ZIP2D) with a “plane‐strain core” option was used to model the fracture process with a critical CTOA chosen to fit the M(T) test data. Fracture simulations were then conducted on other M(T), single‐edge‐crack tension, SE(T), and bend, SE(B), specimens over a wide range in widths (w = 19‐610 mm). No test data were available on the SE‐type specimens. The results supported the TPFC equation for net‐section stresses less than the material proportional limit. However, some discrepancies in the FE fracture simulations results were observed among the numerical analyses made on the three specimen types. Thus, more research is needed to improve the transferability of the TPFC from the M(T) specimen to both the SE(T) and SE(B) specimens for quasi‐brittle materials.  相似文献   

9.
Crack resistance curves of GLARE laminates by elastic compliance   总被引:1,自引:0,他引:1  
The objective of this work was to study the applicability of the elastic compliance technique for crack resistance curves evaluation of commercial GLARE laminates using small SE(B) and C(T) specimens. The experimental evaluation of R-curves of 25.0 mm wide SE(B) specimens of unidirectional GLARE 1 3/2 0.3 and 50.0 mm wide C(T) specimens of bidirectional GLARE 3 5/4 0.3 was performed. Fracture toughness was measured through a recently proposed experimental methodology based on standardized specimens and elastic-plastic methodologies (J-integral and CTOD δ5), whereas crack growth was measured optically and estimated by elastic compliance. According to the results the elastic compliance technique seemed to be applicable to GLARE laminates, accurately predicting stable crack growth during the tests.  相似文献   

10.
Specimen size and geometry effects on cleavage fracture of ferritic steels tested in the ductile-to-brittle transition region remain an important technological impediment in industrial applications of fracture mechanics and in the on-going development of consensus fracture testing standards. This investigation employs 3-D nonllinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint model for cleavage fracture toughness proposed previously by Dodds and Anderson. An extension of the toughness scaling model suggested here combines a revised in-plane constraint correction with an explicit thickness correction derived from extreme value statistics. The 3-D analyses provide effective thicknesses for use in the statistical correction which reflect the interaction of material flow properties and specimen aspect ratios, a/W and W/B, on the varying levels of stress triaxiality over the crack front. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limit indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress-controlled, cleavage mechanism in deep notch SE(B) and C(T) speciments. Moreover, the analyses indicate that side grooves (20 percent) should have essentially no net effect on measured toughness values of such specimens. Additional new results made available from the 3-D analyses also include revised -plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front. To estimate CTOD values, new m-factors are included for use in the expression 131-1.  相似文献   

11.
Previous work by Dodds and Anderson provides a framework to quantify finite size and crack depth effects on cleavage fracture toughness when failure occurs at deformation levels where J no longer uniquely describes the state of stresses and strains in the vicinity of the crack tip. Size effects on cleavage fracture are quantified by defining a value termed J SSY: the J to which an infinite body must be loaded to achieve the same likelihood of cleavage fracture as in a finite body. In weld metal fracture toughness testing, mismatch between weld metal and baseplate strength can alter deformation patterns, which complicate size and crack depth effects on cleavage fracture toughness. This study demonstrates that there is virtually no effect of ±20 percent mismatch on J SSYif the distance from the crack tip to the weld/plate interface (L min) exceeds 5 mm. At higher levels of overmatch (50 to 100%), it is no longer possible to parameterize the departure of J SSYfor a weldment from that for a homogeneous SE(B) based on L min alone. Weld geometry significantly influences the accuracy with which J SSYfor a welded SE(B) can be approximated by J SSYfor a homogeneous specimen at these extreme overmatch levels.  相似文献   

12.
This work provides an estimation procedure to determine J-resistance curves for pin-loaded and clamped SE(T) fracture specimens using the unloading compliance technique and the η-method. A summary of the methodology upon which J and crack extension are derived sets the necessary framework to determine crack resistance data from the measured load vs. displacement curves. The extensive plane-strain analyses enable numerical estimates of the nondimensional compliance, μ, and parameters η and γ for a wide range of specimen geometries and material properties characteristic of structural and pipeline steels. Laboratory testing of an API 5L X60 steel at room temperature using pin-loaded SE(T) specimens with side-grooves provide the load-displacement data needed to validate the estimation procedure for measuring the crack growth resistance curve for the material. The results presented here produce a representative set of solutions which lend further support to develop standard test procedures for constraint-designed SE(T) specimens applicable in measurements of crack growth resistance for pipelines.  相似文献   

13.
This work deals with the influence of crack depth on the fracture toughness at initiation of crack growth and the constraint factor in relationship between the J-integral and the crack tip opening displacement (CTOD). A series of tests were performed on high strength low alloyed HT80 steel welds, and the critical J-integral and CTOD were determined using the load versus load point displacement record from three-point bend specimens with 0.05 < a/W < 0.5. It was found that the fracture toughness for shallow cracks at the onset of crack growth was larger than that for deep cracks for the steel welds tested, but it is felt that there is no fixed relationship between these values in the welds tested. The constraint factor is also a function of crack depth, and values of the factor increase from 0.5 to 1.5 when a/W increases from about 0.05 to 0.5. The factors are not very sensitive to the crack tip materials (HAZ or weld metal) in the welds tested.  相似文献   

14.
The effect of mechanical mismatching (ratio between the yield strength of base and weld metal) on the toughness of welded joints at different temperatures was analysed and the ductile-to-brittle transition curves of these welded joints were experimentally obtained. The filler metal of the joints was always the same, varying the base metal and the width of the welded zone. Two base metals were selected, one with a higher strength than the filler metal (undermatched joint) and the other with a lower strength than the filler metal (overmatched joint). In addition, the joints were made using two different weld widths, 20 and 10 mm.The fracture behaviour of the joints were determined at different temperatures using SE(B) specimens provided with short cracks (a/W = 0.22). Besides, long crack specimens (a/W = 0.5) were also used for comparison. In the case of overmatched joints, the J-values for ductile crack growth are larger than for the undermatched joints. In addition, the ductile-to-brittle transition curve is displaced towards lower-temperatures and higher-toughness values and the toughness for cleavage fracture is also larger for overmatching than for undermatching. All these effects are more significant as the weld width decreases and have been explained in terms of constraint modifications.  相似文献   

15.
Fibre metal laminates (FMLs) are being used to manufacture many structural components in aerospace industry because of their very high strength to weight ratios, yet the exact model for estimating fatigue crack propagation in FMLs cannot be developed because of many variable parameters affecting it. In this research, tensile strength, fatigue life and fracture toughness values of 2/1 configuration carbon reinforced aluminium laminate (CARALL), aramid reinforced aluminium laminate and glass laminate aluminium reinforced epoxy specimens have been investigated. Mechanical, chemical and electrochemical surface treatments were applied to AA 1050 face sheets to improve the adhesive properties of the laminates. The specimens were prepared using vacuum assisted resin transfer moulding technique and were cut to desired shapes. Fatigue tests were conducted on centre notched specimens according to ASTM Standard E399. Real time material data and properties of adhesive were used in definition of numerical simulation model to obtain the values of stress intensity factor at different crack lengths. It was observed that CARALL shows very superior tensile and fatigue strength because of stress distribution during failure. Numerical simulation model developed in this research accurately predicts fracture toughness of aramid reinforced aluminium laminate, CARALL and glass laminate aluminium reinforced epoxy with less than 2% error. An empirical analytical model using experimental data obtained during research was developed which accurately predicts the trend of FMLs fatigue life.  相似文献   

16.
Transferability of the specimen JR/J–T curve to the component level is an important issue in the field of fracture mechanics. Towards this goal, fracture experiments have been carried out on single‐edge bend (SE(B)) and compact tension (CT) specimens and throughwall circumferentially cracked straight pipes/elbows of 200 mm nominal bore (NB) diameter. The pipe material is SA 333 Gr 6 steel (low strength and high toughness material) and specimens are machined from the pipes. Subsequently, elastic–plastic finite‐element analyses have been carried out on these cracked components/specimens in order to evaluate the stress triaxiality levels. It is found that the triaxial levels for these cracked components are similar. Hence, similar fracture behaviour is expected for these components. Consequently, one of the pipe JR curves is used as a reference JR curve to consider the crack growth in the analysis and the load deformation behaviour of other pipes/elbows is predicted. The load deformation behaviour of the piping components is also predicted using an extrapolated JR curve from a specimen that exhibits the similar triaxiality level to that of the cracked components. The predicted results are in good agreement with the experiments.  相似文献   

17.
The objective of this work was the evaluation of crack growth resistance curves ( J–R curves) of commercial GLARE® 3 5/4 laminates at −50 °C. The experimental evaluation of these curves was performed on 50‐mm‐wide compact tension specimens through the unloading compliance technique. The tests were based on the ASTM E1820 standard with minor modifications. Additionally, tensile tests were also performed at −50 °C on dogbone specimens according to the ASTM E8M standard. Comparisons between low and room temperature properties indicate that the material preserves both its tensile strength and fracture toughness at −50 °C, although low temperature J–R curves presented smaller slopes than the room temperature ones after the onset of stable crack growth.  相似文献   

18.
The current investigation pursues the confirmation of the applicability of the limit load solutions in determination of the η factors necessary for fracture toughness testing protocols. The procedure begins with the correct calculation of limit load values in welded single edge notch tension (SE(T)) fracture specimens containing centreline cracks. Hence, the η factor is inferred through the principle of potential energy. Additionally, such results are compared with those obtained from finite element analyses, including strain hardening effects available in the literature. SE(T) specimens subject to pin‐loading display that the η factors are insensitive to the configurational effects and hardening properties. On the other hand, in clamped SE(T) specimens, such effects become meaningful, making its usage in fracture toughness experiments questionable. This work provides an alternative methodology to compute fully plastic proportionality coefficients (η) based on limit load solutions for heterogeneous cracked SE(T) specimens. These analyses also consider the limitations and potentialities of such an approach in experimental measurements of ductile crack growth.  相似文献   

19.
This study describes an extensive set of 3-D analyses conducted on conventional fracture specimens, including pin-loaded and clamped SE(T) specimens, and axially cracked pipes with varying crack configurations. The primary objective is to examine 3-D effects on the correlation of fracture behavior for the analyzed crack configurations using the J-Q methodology. An average measure of constraint over the crack front, as given by an average hydrostatic parameter, denoted Qavg, is employed to replace the plane-strain measure of constraint, Q. Alternatively, a local measure of constraint evaluated at the mid-thickness region of the specimen, denoted QZ0, is also utilized. The analysis matrix considers 3-D numerical solutions for models of SE(T) fracture specimens with varying geometries (i.e., different crack depth to specimen width ratio, a/W, as well as different loading point distance, H) and test conditions (pin-loaded ends vs. clamped ends). The 3-D numerical models for the cracked pipes cover different crack depth to pipe wall thickness ratio, a/t, and a fixed crack depth to crack length ratio, a/c. The extensive 3-D numerical analyses presented here provide a representative set of solutions which provide further support for using constraint-designed SE(T) specimens in fracture assessments of pressurized pipes and cylindrical vessels.  相似文献   

20.
In this paper, results from the linear normalization (LN) technique of Reese and Schwalbe for deriving J‐crack resistance (JR) curves have been compared, related to J–Δa (J‐integral–ductile crack growth) data points, to those obtained from traditional elastic compliance technique. Research results regarding a nuclear grade steel exhibiting a wide range of elastic–plastic fracture resistance agree quite well for both techniques until a certain level of toughness of the material. Below this critical level, LN produces inconsistent results for the sub‐sized compact tension specimens (0.4T C[T]). The evidence suggests that the loss of applicability of the LN technique can be determined on the basis of the η plastic factor (ηpl) for the best linear correlation achieved for ΔPN–Δa (normalised load gradient–ductile crack growth) data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号