首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volatile compounds in skim milk and nonstandardised milk subjected to instant infusion pasteurisation at 80°C, 100°C and 120°C were compared with raw milk, high temperature short time pasteurised milk and milk pasteurised at 85°C/30 s. The composition of volatile compounds differed between infusion pasteurisation treated samples and the reference pasteurisations. The sensory properties of skim milk subjected to instant infusion pasteurisation were described by negative attributes, such as cardboard sour and plastic flavours, which are not associated normally with fresh milk. Partial least squares modelling showed good correlation between the volatile compounds and the sensory properties, indicating the predictive and possible causal importance of the volatile compounds for the sensory characteristics.  相似文献   

2.
Quarg cheese was produced from raw skim milk, pasteurised skim milk, raw skim milk with rennet added and ultrafiltrated raw skim milk. Quarg was also produced from raw skim milk with pepstatin added at curd cutting and from ultrafiltration retentate of raw milk with added pepstatin. No starter bacteria were used in this model system, with the reduction of pH being achieved by addition of glucono- δ-lactone. Yields ranged between 20.25 and 23.5%, with protein levels of 13.6–15.7%. Proteolysis occurred during storage of all experimental cheese samples for 3 m at 8°C. By immunoblotting using antibodies against bovine cathepsin D, immunoreactive procathepsin D was identified in all cheese samples. Presence of cathepsin D or procathepsin D-derived activity was confirmed by a specific enzyme assay in all samples, except those which contained pepstatin. Inhibition of cathepsin D-catalysed proteolysis by pepstatin was observed in chromatograms of water-soluble extracts analysed by reverse-phase HPLC. Peptides thought to be produced as a result of cathepsin D activity were observed in cheese made from both raw and pasteurised milk, suggesting that the activity at least partially survived pasteurisation.  相似文献   

3.
4.
Enterococci are reported to survive pasteurisation but the extent of their survival is unclear. Sixty-one thermoduric enterococci isolates were selected from laboratory pasteurised milk obtained from silos in six dairy factories. The isolates were screened to determine log(10) reductions incurred after pasteurisation (63°C/30 min) and ranked from highest to lowest log(10) reduction. Two isolates each of Enterococcus faecalis, Enterococcus faecium, Enterococcus durans and Enterococcus hirae, exhibiting the median and the greatest heat resistance, as well as E. faecalis ATCC 19433, were selected for further heat resistance determinations using an immersed coil apparatus. D values were calculated from survival curves plotted from viable counts obtained after heating isolates in Brain Heart Infusion Broth at 63, 69, 72, 75 and 78°C followed by rapid cooling. At 72°C, the temperature employed for High Temperature Short Time (HTST) pasteurisation (72°C/15s), the D values extended from 0.3 min to 5.1 min, depending on the isolate and species. These data were used to calculate z values, which ranged from 5.0 to 9.8°C. The most heat sensitive isolates were E. faecalis (z values 5.0, 5.7 and 7.5°C), while the most heat resistant isolates were E. durans (z values 8.7 and 8.8°C), E. faecium (z value 9.0°C) and E. hirae (z values 8.5 and 9.8°C). The data show that heat resistance in enterococci is highly variable.  相似文献   

5.
Mycobacterium avium subsp. paratuberculosis (MAP) continues to be associated with Crohn’s disease. Following work in the 1990s that suggested that statutory pasteurisation of milk (72 °C, 15 s) was insufficient to destroy MAP, the UK Dairy Industry increased the holding time to 25 s. Since then, some plants have increased the lethality of pasteurisation further with a number using 78 °C for 27 s. Despite the increase in lethality, a recent survey of pasteurised milk in England found that 10.3% of pasteurised milk samples tested positive for viable MAP. This article discusses the significance of MAP and why viable MAP might be found in pasteurised milk.  相似文献   

6.
A pilot plant scale continuous flow pulsed electric field (PEF) and high temperature short time (HTST) processing system was integrated with an aseptic packaging machine. Fuji applesauce and blueberry applesauce were processed with PEF followed by HTST pasteurisation (PEF + HTST). PEF + HTST processed Fuji applesauce from fresh Fuji apples demonstrated high and stable sensory scores during 9 months storage at 27 °C, and had comparative sensory quality with Meal Read‐to‐Eat (MRE) and commercial applesauce products stored at 4 °C. PEF + HTST processed blueberry applesauce from pre‐pasteurised materials had lower sensory scores than PEF + HTST processed Fuji applesauce and was significantly less stable during the storage at 27 °C. PEF + HTST processed applesauces had aerobic count and mould and yeast count of <10 cfu mL?1 during storage. Electrical conductivity, pH and °Brix, were not significantly changed throughout storage time (P > 0.05).  相似文献   

7.
Direct heat treatment of two milk types, skimmed and nonstandardised full‐fat, was performed by instant steam infusion and compared with indirect heating. Infusion conditions were temperatures of 72–120°C combined with holding times of 100–700 ms, and indirect heat conditions were 72°C/15 s and 85°C/30 s. The activity of indigenous enzymes such as alkaline phosphatase, lactoperoxidase, xanthine oxidase and γ‐glutamyl transpeptidase was evaluated. Infusion temperature was the main determinant of inactivation. Whey protein denaturation represented by β‐lactoglobulin increased significantly with infusion temperature. The nonstandardised milk had a higher denaturation rate than skimmed milk. The effect of instant infusion on pH and milk fat globule size in relation to whey protein denaturation and association is discussed.  相似文献   

8.
The objective of this study was to evaluate the effectiveness of cold microfiltration (MF), alone or in combination with heat treatment, in extending the shelf life of skim milk. Raw skim milk underwent MF at 6 ± 1°C with a ceramic membrane of 1.4-μm pore size, at a transmembrane pressure of 75.8 kPa and a crossflow velocity of 7 m/s. Samples of raw skim milk; MF skim milk; high-temperature, short-time (HTST)-pasteurized milk; and MF+HTST-pasteurized skim milk were stored at 6°C for 92 d. During the shelf-life study, the total bacterial count and degree of proteolysis were evaluated weekly. The study was replicated 3 times. Cold MF was very effective in reducing the microbial load in skim milk, and an average of 3.4 log reduction in vegetative bacteria was obtained. Although HTST pasteurization reduced the bacterial load by ~2 log, the MF+HTST process resulted in near complete elimination of vegetative microflora, with a total of ~4 log reduction. A 9-member sensory panel found no significant differences between skim milk samples processed with or without MF. The MF+HTST skim milk had only minor microbial growth after 92 d at 6°C, but its proteolytic shelf life was limited by plasmin activity. A reduction of plasmin activity and a slower rate of proteolysis were obtained by increasing the heat treatment temperature to 85°C. The results of this study can be used to make decisions regarding processing strategies that lead to increased skim milk shelf life.  相似文献   

9.
Half-fat Cheddar cheese (∼15%, w/w, fat) was manufactured on three occasions from milk pasteurised at 72, 77, 82 or 87 °C for 26 s, and analysed over a 270 day ripening period. Increasing milk pasteurisation temperature significantly increased the levels of moisture (from ∼45% at 72 °C to 50% at 87 °C), total lactate, and D(−)-lactate in cheese over the 270 day ripening period. Conversely, the cheese pH decreased significantly on increasing pasteurisation temperature. Increasing the pasteurisation temperature did not significantly affect the populations of starter or non-starter lactic acid bacteria during maturation. The use of higher pasteurisation temperatures would appear particularly amenable to exploitation as a means of producing high-moisture (e.g., 40–41%), short-ripened, mild-flavoured Cheddar or Cheddar-like cheeses.  相似文献   

10.
High-temperature short-time (HTST) pasteurisation is not sufficient for complete elimination of Bacillus sp. in milk. Hence, it is important to assess their prevalence, phenotypic and genetic antimicrobial resistance profiles in pasteurised milk. In this study, we investigated Bacillus prevalence and their phenotypic resistance to 25 antimicrobials and prevalence of five plasmid antimicrobial resistance genes. All isolates were resistant to β-lactams; most isolates were susceptible to chloramphenicol (n = 52), ciprofloxacin, meropenem, sulphonamides, tetracycline and vancomycin (n = 56). Intriguingly, despite phenotypic sulphonamide and tetracycline sensitivity, Sul2 and tetA genes were detected in different Bacillus species, signifying a potential risk of horizontal gene transfer of these mobile resistance genes through pasteurised milk.  相似文献   

11.
Milk subjected to instant infusion pasteurization (IIP) at 72 °C, 100 °C and 120 °C (holding time 0.2 s) exhibited increased rennet coagulation time and decreased curd firming rate for increasing heat treatment temperature, when compared with raw or high temperature short time pasteurized (HTST) milk. However, addition of 4.5 mm or 9.0 mm of calcium restored the impaired rennet coagulation ability. Open texture cheeses produced from IIP milk (100 °C and 120 °C) contained significantly more moisture, had lower pH and shorter texture than similar cheese from IIP at 72 °C and HTST pasteurized milk. Cheese ripening was also affected by heat treatment, and different patterns of casein breakdown and peptide formation resulted from cheeses made from milk treated to IIP at 100 °C and 120 °C compared with cheeses made using IIP at 72 °C or HTST.  相似文献   

12.
Water vapour sorption isotherms of casein micelles prepared from raw milk and various heat-treated milks were determined. The equilibrium water contents of the heated preparations were markedly lower than that of the raw-milk casein over the whole range of vapour pressures studied. An analysis of the sorption isotherms in the relative vapour pressure range 0.1--0.45, according to the Brunauer, Emmett & Teller (1938) equation, showed that there were significant differences between preparations in the computed monolayer contents. Differences in the rates of water sorption were also observed between the different preparations. As judged from the amount of absorbed water, the influence of the heating methods could be ranked in the order: HTST (92 degrees C) approximately UHT (direct) less than UHT (indirect) less than HTST (72 degrees C).  相似文献   

13.
Prior to processing milk and cream were standardised and homogenised. Skim milk was cross-flow microfiltered (CFMF) prior to treatment with pulsed electric fields (PEF) or high temperature short time (HTST) pasteurization. The effect of temperature of the skim milk and product composition on the efficacy of PEF treatment was determined. The electrical conductivity of the product was related to fat and solids content and increased 5% for every g/kg increase of solids and decreased by nearly 0·7% for every g/kg increase of fat. From the three microbial groups analyzed (mesophilic, coliform, and psychrotroph) in milks differences (P<0·05) in the inactivation of mesophilic microorganisms were observed between the counts following PEF treatment, while HTST pasteurization resulted in higher reductions in all different counts than those obtained after PEF. Increasing the skim milk temperature prior to PEF treatment to about 34°C showed equivalent reductions in microbial counts to skim milk treated at 6°C in half the time. The reductions achieved by a combination of CFMF and PEF treatments were comparable to those achieved when CFMF was combined with HTST pasteurization. A higher reduction in coliform counts was observed in homogenised products subjected to PEF than in products that were only standardised for fat content.  相似文献   

14.
This study evaluated the ability of spore-forming Bacillus spp. to resist milk pasteurization conditions from 72 to 150 degrees C. Spores from the avirulent surrogate Sterne strain of Bacillus anthracis, as well as a representative strain of a common milk contaminant that is also a pathogen, Bacillus cereus ATCC 9818, were heated at test temperatures for up to 90 min in dH2O, brain heart infusion broth, or skim milk. In skim milk, characteristic log reductions (log CFU per milliliter) for B. anthracis spores were 0.45 after 90 min at 72 degrees C, 0.39 after 90 min at 78 degrees C, 8.10 after 60 min at 100 degrees C, 7.74 after 2 min at 130 degrees C, and 7.43 after 0.5 min at 150 degrees C. Likewise, log reductions (log CFU per milliliter) for viable spores of B. cereus ATCC 9818 in skim milk were 0.39 after 90 min at 72 degrees C, 0.21 after 60 min at 78 degrees C, 7.62 after 60 min at 100 degrees C, 7.37 after 2 min at 130 degrees C, and 7.53 after 0.5 min at 150 degrees C. No significant differences (P < 0.05) in thermal resistance were observed for comparisons of spores heated in dH2O or brain heart infusion broth compared with results observed in skim milk for either strain tested. However, spores from both strains were highly resistant (P < 0.05) to the pasteurization temperatures tested. As such, pasteurization alone would not ensure complete inactivation of these spore-forming pathogens in dH2O, synthetic media, or skim milk.  相似文献   

15.
An improved extraction (2.5% HPO3, 5 mm dithiothreitol) and HPLC quantification methodology using a C–18 column at 35 °C and 0.1 m acetic acid (98%) and acetonitrile (2%) mobile phase was developed to quantify total ascorbic acid (AA) in commercial whole/semi‐skim/skim raw/pasteurised/UHT milk packaged in opaque bags, transparent plastic, cardboard and Tetra Brik?. AA content ranged from 0.21 to 10 and from 3.4 to 16 mg L?1 in milk from retail outlets and processing plants, respectively, and was higher in organic milk. For same processor/lot samples, pasteurised milk showed higher AA content than UHT milk. This was not true for retail outlets samples. AA content was similar for whole/semi‐skim and semi‐skim/skim milk, but not for whole/skim comparisons. Among UHT samples, the AA content trend was whole<semi‐skim<skim and lower for UHT milk in opaque plastic and Tetra Brik? container. After 14 days at 4 °C in the dark, AA losses ranged 35–83% depending on milk type and preservation method with a higher AA retention in unopened containers.  相似文献   

16.
Raw, whole and skim milks containing fluoride up to 100 ppm fluoride were pasteurised by the HTST and low temperature holding (LTH), and UHT and 'in bottle' sterilization methods. The heat treated milks were stable on standing at room temperature while centrifugation at 4000 g , 12 000 g and 30 000 g showed that a fluoride containing precipitate was not formed.
Dialysis in conjunction with a fluoride ion-selective electrode showed that most of the fluoride was in an easily removable ionic complex. However a proportion of the fluoride, depending upon the heat treatment process used, was not removed by dialysis. A similar effect was observed with heat treated 0.25% casein suspension and with calcium phosphate free (CPF) milk. Examination of the non-dialysable fraction from milk, by addition of fresh fluoride and also by gel chromotography showed that the fluoride was held in a tightly bound but reversible ionic complex.
All of the fluoride could be recovered in an ionic form as shown using the ion-selective electrode on the milk after precipitation of the milk protein with 0.3 M citric acid.  相似文献   

17.
ABSTRACT

The study aimed to evaluate the effects of heat on macrocyclic lactone residues in cows’ milk. Ivermectin, abamectin, doramectin, eprinomectin and moxidectin were added to raw milk in three concentrations. The milk was then pasteurised (40 seconds at 74°C or 1 minute at 80°C) and boiled (10 minutes at 100°C). The analyses were performed with a validated method: LC-MS/MS. Thermal treatment resulted in a statistically significant decrease in the abamectin, eprinomectin, and moxidectin concentrations in the milk; however, the residues did not completely degrade. Boiling resulted in a greater decrease in the moxidectin concentrations than was observed with pasteurisation. The high pasteurisation and boiling processes had a greater effect on the eprinomectin residues than did the low pasteurisation process. The pasteurisation and boiling processes did not have an effect on the doramectin and ivermectin. The study concluded that the macrocyclic lactones are generally resistant to such processes.  相似文献   

18.
Insulin-like growth-factor 1 (IGF-1) and insulin were analysed from bovine milk during microfiltration (MF) and ultrafiltration (UF) processes using immunochemical methods. IGF-1 was found in the MF retentate and in the UF retentate. A very small fraction of IGF-1 was in the UF permeate. The results indicated that IGF-1 was present in milk as a complex molecule or bound to milk proteins. Insulin showed similar behaviour, but more insulin was found in the MF retentate than in the UF retentate. No insulin was found in the UF permeate. There were no differences in IGF-1 or insulin distribution between pasteurised or non-pasteurised milk. The stability of bovine insulin to heat treatments was also determined. The molecule was stable during pasteurisation at 65 and 72 °C, but lost some of its immunochemical activity at 90 and 135 °C.  相似文献   

19.
Typical high-temperature, short-time (HTST) pasteurization encompasses a lower heat treatment and shorter refrigerated shelf life compared with ultra-pasteurization (UP) achieved by direct steam injection (DSI-UP) or indirect heat (IND-UP). A greater understanding of the effect of different heat treatments on flavor and flavor chemistry of milk is required to characterize, understand, and identify the sources of flavors. The objective of this study was to determine the differences in the flavor and volatile compound profiles of milk subjected to HTST, DSI-UP, or IND-UP using sensory and instrumental techniques. Raw skim and raw standardized 2% fat milks (50 L each) were processed in triplicate and pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by DSI-UP or IND-UP. Milks were cooled and stored at 4°C, then analyzed at d 0, 3, 7, and 14. Sensory attributes were determined using a trained panel, and aroma active compounds were evaluated by solid-phase micro-extraction or stir bar sorptive extraction followed by gas chromatography-mass spectrometry, gas chromatography-olfactometry, and gas chromatography-triple quad mass spectrometry. The UP milks had distinct cooked and sulfur flavors compared with HTST milks. The HTST milks had less diversity in aroma active compounds compared with UP milks. Flavor intensity of all milks decreased by d 14 of storage. Aroma active compound profiles were affected by heat treatment and storage time in both skim and 2% milk. High-impact aroma active compounds were hydrogen sulfide, dimethyl trisulfide, and methional in DSI-UP and 2 and 3-methylbutanal, furfural, 2-heptanone, 2-acetyl-1-pyrroline, 2-aminoacetophenone, benzaldehyde, and dimethyl sulfide in IND-UP. These results provide a foundation knowledge of the effect of heat treatments on flavor development and differences in sensory quality of UP milks.  相似文献   

20.
The microflora of a semi-hard, washed curd, Norwegian cheese with an added adjunct culture of propionic acid bacteria (PAB) was investigated throughout ripening by phenotypic and physiological tests, API test and 16S rRNA sequencing. Cheeses were made at two commercial Norwegian dairies using different milk treatments (pasteurisation versus microfiltration plus pasteurisation) and the same type of starter cultures. Microflora in the cheese varied according to different plant site, milk treatment, and ripening time. PAB dominated the microflora throughout the ripening process. Leuconostoc spp., most probably from the starter, dominated among the isolates from the cheese using microfiltered and pasteurised milk; however, after 40 weeks of ripening non-starter lactic acid bacteria specie Lactobacillus casei/paracasei and Leuconostoc spp. dominated at the dairy using pasteurised milk. Cheese made at the two plants on two subsequent days showed almost identical microflora throughout ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号