首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inverse transient heat conduction problems of a multilayered functionally graded (FG) cylinder are presented. The approach is based on measurement of temperature on the outer surface of the cylinder to estimate the heat flux and convection heat transfer coefficient on its inner surface. The non-Fourier heat transfer equation is employed to accurately formulate the problem. The conjugate gradient method (CGM) is used for the optimization procedure and the incremental differential quadrature method (DQM) is applied to solve the direct, sensitivity, and adjoint problems. The accuracy of the presented approach is examined by simulating the exact and noisy data through different examples. Good accuracy of the obtained results validates the presented approach.  相似文献   

2.
The Laplace transform technique and control volume method in conjunction with the hyperbolic shape function and least-squares scheme are applied to estimate the unknown surface conditions of one-dimensional hyperbolic inverse heat conduction problems. In the present study, the expression of the unknown surface conditions is not given a priori. To obtain the more accurate estimates, the whole time domain is divided into several analysis sub-time intervals. Afterward, the unknown surface conditions in each analysis interval are estimated. To evidence the accuracy of the present method, a comparison between the present estimations and exact results is made. Results show that good estimations on the unknown surface conditions can be obtained from the transient temperature recordings only at one selected location even for the cases with measurement errors.  相似文献   

3.
In this work we estimate the surface temperature in two dimensional steady-state in a rectangular region by two different methods, the singular value decomposition (SVD) with boundary element method (BEM) and the least-squares approach with integral transform method (ITM). The BEM method is efficient for solving inverse heat conduction problems (IHCP) because only the boundary of the region needs to be discretized. Furthermore, both temperature and heat flux at the unknown boundary are estimated at the same time. The least-squares technique involves solving the equations constructed from the measured temperature and the exact solution. The measured data are simulated by adding random errors to the exact solution of the direct problem. The effects of random errors on the accuracy of the predictions are examined. The sensitivity coefficients are also presented to illustrate the effect of sensor location on the estimated surface conditions. Numerical experiments are given to demonstrate the accuracy of the present approaches.  相似文献   

4.
A hybrid numerical algorithm of the Laplace transform technique and finite-difference method with a sequential-in-time concept and the least-squares scheme is proposed to predict the unknown surface temperature of two-sided boundary conditions for two-dimensional inverse heat conduction problems. In the present study, the functional form of the estimated surface temperatures is unknown a priori. The whole time domain is divided into several analysis sub-time intervals and then the unknown surface temperatures in each analysis interval are estimated. To enhance the accuracy and efficiency of the present method, a good comparison between the present estimations and previous results is demonstrated. The results show that good estimations on the surface temperature can be obtained from the transient temperature recordings only at a few selected locations even for the case with measurement errors. It is worth mentioning that the unknown surface temperature can be accurately estimated even though the thermocouples are located far from the estimated surface. Owing to the application of the Laplace transform technique, the unknown surface temperature distribution can be estimated from a specific time.  相似文献   

5.
Two methods of solving the transient inverse heat conduction problens in complex shaped elements are presented in this paper. The time-space temperature distribution in whole element cross-section is reconstructed using the measured temperature histories at several points placed inside the element or on its easily accessible outer surface. Thermal stresses are then evaluated involving Finite Element Analysis. In both methods the heat transfer coefficient at the element inner surface is the unknown value. Four examples are presented, two for one method showing the high accuracy of the presented methods and possibility of their practical application.  相似文献   

6.
One of the current practices for measuring heat flux during flash fire testing, forest fires, and other industrial cases focuses on the use of semi-infinite models to predict the heat flux during exposure through surface temperature measurements on simulated skin sensors. For short time frames, these models can be shown to have acceptable accuracy. However, when considering longer time exposures at reduced heat fluxes, such as with firefighters in a forest fire, the accuracy of these models could be brought into question. A one-dimensional, finite length scale, transient heat conduction model was developed using a Green's function approach on a rectangular sensor. The model was developed using transient temperature boundary conditions to avoid the use of complicated radiation and convection conditions at each boundary. For comparison, a semi-infinite model utilizing the same boundary condition on the exposed face was solved using both the Laplace transform method and Green's function method. Experimental data was obtained during exposure to a cone calorimeter. All measurements were taken for a minimum duration of 2 min. This temperature data was used to develop appropriate curves for the boundary conditions and validate the analytical models. It was found that the temperature obtained from the one-dimensional transient heat conduction model based on Green's functions agreed well with the experimental results over longer exposure times, and with reduced error when compared with the semi-infinite model. This suggests that modeling the problem on a finite-length scale will produce more accurate or more conservative temperature and heat flux results over extended periods of exposure in high heat load applications.  相似文献   

7.
An image based method for transient surface normal heat flux calculation from thermographic data is suggested. It is based on an analytical solution of the three-dimensional linear heat conduction equation. The method yields correct results for the surface normal heat flux even in regions with strong lateral gradients by taking into account the transient surface temperature of an area surrounding each evaluation point within the thermographic image. The solution for the heat flux can be stabilized with respect to measurement errors by an iterative regularization method. The validation of the method in synthetic test cases indicates its good accuracy over a broad range of Fourier numbers.  相似文献   

8.
ABSTRACT

In this article, a novel iterative physical-based method is introduced for solving inverse heat conduction problems. The method extends the ball spine algorithm concept, originally developed for inverse fluid flow problems, to inverse heat conduction problems by employing a subtle physical-sense rule. The inverse problem is described as a heat source embedded within a solid medium with known temperature distribution. The object is to find a body configuration satisfying a prescribed heat flux originated from a heat source along the outer surface. Performance of the proposed method is evaluated by solving many 2-D inverse heat conduction problems in which known heat flux distribution along the unknown surface is directly related to the Biot number and surface temperature distribution arbitrarily determined by the user. Results show that the proposed method has a truly low computational cost accompanied with a high convergence rate.  相似文献   

9.
A numerical implementation of estimating boundary heat fluxes in enclosures is proposed in the present work. Particularly, the flow field is dynamically coupled with the heat convection in the fluid and the heat conduction in the solid domain. An iterative conjugate gradient method is applied such that the gradient of the cost function is introduced when the appropriate sensitivity and adjoint problems are defined. In this approach, no a priori information is needed about the unknown function to be determined. Numerical solutions are obtained for the case of a square enclosure centrally-inserted with a solid block and subjected to an unknown heat flux on one side and to known conditions on the remaining sides. Fluid and heat transports are visualized by the streamlines and heatlines respectively, which are evidently affected by the thermal Rayleigh number, solid body size and thermal conductivity of solid phase, and the functional form of the imposed heat flux. The accuracy of the heat flux profile estimations is shown to depend strongly on the thermal Rayleigh number, body size and relative thermal conductivity of the solid material. Effects of functional form of the unknowns, sensors number and position, and measurement errors on the accuracy of estimation are also investigated. The present work is significant for the flow control simultaneously involving the heat conduction and convection.  相似文献   

10.
The transient heat transfer analysis of functionally graded (FG) hollow cylinders subjected to a distributed heat flux with a moving front boundary on its inner surface is presented. The heat flux is assumed to be axisymmetric, and its front boundary moves along the axis of the cylinder. A method composed of the finite element and differential quadrature methods is employed to discretize the governing equations in the spatial domain. After demonstrating the convergence and accuracy of the method, the effects of different parameters on the temperature distribution and time history of the temperature at different points of FG cylinder are investigated.  相似文献   

11.
This study presents an exact analytical solution of transient heat conduction in cylindrical multilayer composite laminates. This solution is valid for the most generalized linear boundary conditions consisting of the conduction, convection and radiation heat transfer. Here, it is supposed that the fibers are winded around the cylinder and their direction can be changed in each lamina. Laplace transformation is applied to change the domain of the solutions from time into the frequency. An appropriate Fourier transformation has been derived using the Sturm–Liouville theorem. Here, a set of equations for Fourier coefficients are obtained based on the boundary conditions both inside and outside the cylinder, and the continuity of temperature and heat flux at boundaries between adjacent layers. The exact solution of this set of equations is obtained using Thomas algorithm and Fourier coefficients are expressed by recessive relations. Due to the difficulty of applying the inverse Laplace transformation, the Meromorphic function method is utilized to find the transient temperature distribution in laminate. Some industrial examples are presented to investigate the ability of current solution for solving the wide range of applied steady and unsteady problems.  相似文献   

12.
Two different heat transfer models for predicting the transient heat transfer characteristics of the slabs in a walking beam type reheat furnace are compared in this work. The prediction of heat flux on the slab surface and the temperature distribution inside the slab have been determined by considering thermal radiation in the furnace chamber and transient heat conduction in the slab. Both models have been compared for their accuracy and computational time. The furnace is modeled as an enclosure with a radiatively participating medium. In the first model, the three-dimensional (3D) transient heat conduction equation with a radiative heat flux boundary condition is solved using an in-house code. The radiative heat flux incident on the slab surface required in the boundary condition of the conduction code is calculated using the commercial software FLUENT. The second model uses entirely FLUENT along with a user-defined function, which has been developed to account for the movement of slabs. The results obtained from both models have a maximum temperature difference of 2.25%, whereas the computational time for the first model is 3 h and that for the second model is approximately 100 h.  相似文献   

13.
The convergence and regularization mechanism of the conjugate gradient algorithm applied to inverse heat conduction problems are studied within the context of a Fourier analysis, for a square enclosure subjected to an unknown time-varying heat flux on one side, and to known boundary conditions on the remaining sides. Analytic solutions are derived for the Fourier components of the unknown flux over a given time interval. The convergence rate of the algorithm is thereby shown to depend essentially on the time frequency of the data. Numerical solutions are also presented to describe in details the convergence process and solution regularization power of the conjugate gradient method, when the unknown heat flux contains many frequency components and the measurement data are noisy. It is found that an unknown time-dependent heat flux may be satisfactorily recovered using a single sensor even when the temperature field becomes two-dimensional, and that the sensor should be placed in a symmetric manner for better results.  相似文献   

14.
A method of solution of transient diffusion, e.g. heat conduction, problems in homogeneous and isotropic media with internal sources and arbitrary (including nonlinear) boundary conditions and initial conditions is proposed. The method is based on the reduction of the problem to one only involving surface values of temperature and/or heat flux in the form of an integral equation through the introduction of fundamental solutions and the use of Green's theorem. The integral equation is solved numerically for a specific example.  相似文献   

15.
The finite volume approach is developed for the inverse estimation of thermal conductivity in one-dimensional domain. The differential governing equation of heat conduction is converted to a system of linear equations in matrix form using the temperature data and heat generation at the discrete grid points as well as surface heat flux. The unknown thermal conductivities are obtained by solving the system equations directly. The features of the present method are that no prior information about the functional form of the thermal conductivity is required and no iterations in the calculation process are needed. The accuracy and robust of the present method are verified by comparing examples of inverse estimation of spatially and temperature-dependent thermal conductivities with the exact solutions.  相似文献   

16.
INTRODUCTI0NInverseradiati0nproblemshavedefinedasubjectofinterestf0rthepast3Oyears0nsoandthereex-istsac0nsiderablebody0fknowledgesurroundingthesubjectthathasbeenextensivelyreviewedinaseries0fpapersbyM.C.rmick[1-4].Theyarecon-cernedwiththedeterminati0noftheradiativepr0p-ertiesandthetemperaturedistributionsofmediaus-ingvari0ustypesofradiationmeasurements.Despitetherelativelylargeinterestexpressedininverseradia-tionproblems,mostoftheworkfocusedontheinverseestimati0noftemperaturedistributions…  相似文献   

17.
This note introduces a mathematical derivation of the heat conduction model that incorporates boundary conditions. In particular, in the present approach boundary conditions are derived in parallel to the heat equation, while in the standard approach to heat conduction modelling they are appended at a later stage. Because of its peculiar mathematical formulation, this method allows modelling heat sources or sinks placed on the boundary. Furthermore, it is shown that when such heat sources depend linearly on the surface temperature and the heat flux, each of their points can be described as a point source emitting a heat wave directed into an infinitesimal volume in the neighbourhood of the surface.  相似文献   

18.
Two-dimensional transient inverse heat conduction problem (IHCP) of functionally graded materials (FGMs) is studied herein. A combination of the finite element (FE) and differential quadrature (DQ) methods as a simple, accurate, and efficient numerical method for FGMs transient heat transfer analysis is employed for solving the direct problem. In order to estimate the unknown boundary heat flux in solving the inverse problem, conjugate gradient method (CGM) in conjunction with adjoint problem is used. The results obtained show good accuracy for the estimation of boundary heat fluxes. The effects of measurement errors on the inverse solutions are also discussed.  相似文献   

19.
An analytical method has been developed for the inverse problem of two‐dimensional heat conduction using the Laplace transform technique. The inverse problem is solved for only two unknown surface conditions and the other surfaces are insulated in a finite rectangular body. In actual temperature measurement, the number of points in a solid is usually limited so that the number of temperature measurements required to approximate the temperature change in the solid becomes too small to obtain an approximate function using a half polynomial power series of time and the Fourier series of the eigenfunction. In order to compensate for this lack of measurement points, the third‐order Spline method is recommended for interpolating unknown temperatures at locations between measurement points. Eight points are recommended as the minimum number of temperature measurement points. The calculated results for a number of representative cases indicate that the surface temperature and the surface heat flux can be predicted well, as revealed by comparison with the given surface condition. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(7): 618–629, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10116  相似文献   

20.
A two-dimensional inverse analysis is presented for the estimation of the inlet temperature of the fluid flow and wall heat flux in a thermally developing hydrodynamically developed laminar flow in a duct. The inverse analysis is based on the temperature reading located at a stream inside the duct at several different points. At the beginning of the study, finite difference methods are employed to discretize the problem, and then a linear inverse model is constructed to identify the unknown conditions. The present approach is to rearrange the matrix forms of the differential governing equation and estimate the inlet temperature of the fluid and unknown surface conditions of the duct. The linear least squares method is adopted to find the solution. The advantage of applying this method in inverse analysis is that no prior information is needed on the functional form of the unknown quantities, no initial guess is required, and the number of iterations in the calculation process is limited to one. The effects of sensor position, magnitude of measurement error, and number of measurements on the accuracy of estimates are examined. The results show that the preferred position of the sensor is closer to the inlet region and only few measuring points are sufficient to estimate the wall heat flux and inlet temperatures of the fluid when the measurement errors are neglected. When the measurement errors an considered, more measuring points are needed in order to increase the congruence of the estimated results to exact solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号