首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
北斗三号全球系统已开始为全球用户提供稳定可靠的高精度定位、导航与授时服务。 本文基于我国国家标准时间频率 UTC(NTSC)系统,开展北斗三号非差组合载波相位时间比对性能分析,通过实测数据开展研究并试验了北斗三号非差组合载 波相位时间比对在零基线与长基线时间比对方面的性能,并在此基础上开展北斗三号与 GPS 融合载波相位时间比对试验。 结 果表明,零基线比对中,两接收机共钟比对钟差的标准偏差优于 0. 3 ns;长基线比对中,利用北斗三号非差组合载波相位时间比 对以及融合载波相位时间比对获得的亚欧两守时实验室之间的比对钟差与国际权度局基于 GPS 时间比对链路获得的钟差具 有较好的一致性,钟差的频率稳定度和时间稳定度与国际权度局发布的结果基本一致,且残差的均方根均优于 0. 25 ns,试验结 果满足亚纳秒量级的时间比对应用需求。  相似文献   

2.
基于我国时间基准UTC(NTSC)系统,开展北斗天线相位中心(APC)改正在精密单点定位(PPP)以及高精度时间比对中的应用研究。通过接收机实测的北斗数据以及国际GNSS服务(IGS)中心提供的北斗精密钟差产品、轨道产品和IGS发布的多系统APC改正文件,进行北斗精密单点定位数据处理。结果表明,APC改正前后的精密单点定位X、Y、Z 3个方向上的误差均方根分别为0. 011 0、0. 021 2、0. 009 5 m以及0. 002 6、0. 007 1、0. 003 7 m,可以看出修正后的定位精度具有明显的提高。同样在零基线共钟时间比对以及远距离时间比对方面,两接收机同源零基线比对结果的标准偏差由未进行APC修正前的0. 148 2 ns降到修正后的0. 093 0 ns;远距离高精度时间比对结果的标准偏差从修正前的0. 302 9 ns降低到修正后的0. 266 8 ns,时间比对的短期稳定度也有所提高。因此,随着北斗系统的建设以及国际GNSS服务分析中心的相关北斗精密产品的不断完善,北斗的服务精度将越来越高。  相似文献   

3.
为了解决标准卫星共视法中存在的两个局限性:一是其完整的观测周期为16 min,只有13 min有观测数据,存在3 min观测间隙;二是数据事后交换处理模式,导致比对结果生成严重滞后,不满足实时性的要求。本文提出了一种改进的卫星共视法,改进的卫星共视法不使用国际权度局规定的共视跟踪表,而是采用时间频率连续比对的方法,以10 min(或其整数倍)作为一个观测周期,并同时对观测数据进行处理,当一个周期结束时,立即进入下一个观测周期,去除了标准卫星共视法中每个观测周期内的观测死区时间,增加了观测数据量,实现了时间频率的连续比对。最后,文中利用改进的卫星共视法研制了一套高精度远程时间频率校准系统,并与标准卫星共视法比对结果进行了对比分析,得出零基线情况下,改进的卫星共视法授时精度达到0.295 ns,与相同条件下标准卫星共视法比对结果 0.554 ns相比有了提高。另外,在长基线条件下,改进卫星共视法的授时精度达到3.12 ns,频率稳定度天稳达到8.24 e-14。  相似文献   

4.
基于北斗的时间传递方法及其精度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
GNSS时间传递技术是卫星导航技术在时间频率领域的重要应用,也是时间传递的主要技术手段之一。随着我国北斗卫星导航系统的不断建设,北斗系统在时间频率领域应用的研究也逐步深入。主要基于北斗卫星导航系统特有的IGSO、MEO、GEO卫星星座,开展了基于北斗共视和载波相位时间传递算法研究,研制了北斗时间传递软件包(PPTSlo),并对其时间传递链路精度、稳定度进行了定性、定量分析,实验结果表明北斗共视时间传递精度优于6 ns,北斗载波相位时间传递精度能达到亚纳秒-纳秒精度。  相似文献   

5.
随着全球导航系统的建设和发展应用,我国北斗导航系统也开始逐步向全球用户提供高质量的定位、导航和授时服务。基于我国时间基准UTC(NTSC)系统,开展北斗导航系统测距信号评估与精密单点定位(PPP)应用研究。通过实测数据首先分析北斗测距B1、B2频点的信噪比以及周围观测环境所引起的多路径影响。同时,讨论了北斗精密单点算法,并利用实测数据以及GNSS服务中心IGS国际多模GNSS实验工程(MGEX)提供的精密轨道和钟差产品进行精密定位解算。结果表明,B2频点信号的接收性能优于B1频点,北斗精密单点定位计算的结果在X、Y、Z 3个方向上的误差基本保持在cm级,解算的本地时相对于IGST偏差的频率稳定度短稳达到了10~(-14)量级,与全球定位系统(GPS)精密单点定位性能基本相当,表明我国北斗系统可用于ns级高精度时间传递。  相似文献   

6.
基于全球卫星导航系统的时间比对是当前国际标准时间产生过程中的主要技术之一,美国的GPS和俄罗斯的GLONASS系统都已被国际权度局正式列为国际标准时间比对的手段。为促使北斗尽早加入国际标准时间的计算,中国科学院国家授时中心和瑞典国家技术研究院以及比利时国家天文台等欧洲守时实验室在全球卫星导航系统时间比对标准的框架下,基于上述3个守时实验室各自保持的各国时间基准系统,利用北斗伪码实测数据,在国内外首次开展了北斗卫星导航系统亚欧长基线高精度共视时间比对试验。结果表明,该试验中北斗零基线共钟比对结果的标准偏差(STDEV)优于1 ns,亚欧长基线北斗共视时间比对STDEV优于2.5 ns,天稳可达10-14量级,这与GPS共视性能基本相当。表明我国北斗卫星导航系统现已可用于纳秒级高精度时间传递与远距离时间比对,该试验的完成为北斗正式纳入国际标准时间的计算提供了技术支持。  相似文献   

7.
随着全球导航卫星系统(GNSS)的建设和完善,多系统融合时间比对成为未来发展的趋势。基于中国科学院国家授时中心、捷克无线电工程和电子学院以及瑞典国家计量研究院3个国际重要守时实验室的时间基准系统中四系统GNSS接收机伪距与载波相位观数据,以及国际GNSS服务中心发布的多系统精密轨道和钟差等数据,开展GNSS多系统PPP融合时间比对方法研究。试验结果表明,GNSS多系统PPP融合可以有效增加可用卫星的数目,相对于单系统卫星观测数量提高了2倍以上,减少了多径误差以及观测高度角较低所带来的观测噪声等影响,改善观测站的卫星分布对于接收机钟差参数的影响,提高时间比对的稳定性和可靠性。在长基线时间比对的稳定度方面,GNSS多系统PPP融合技术解算的两地钟差的稳定度方面要优于单系统,对基于北斗、格洛纳斯以及伽利略系统的单系统PPP比对有较明显的提高,且提高在5%以上。  相似文献   

8.
利用卫星双向时间频率传递方法可以实现精度优于1 ns的远程时间同步。卫星双向设备时延差是影响双向比对结果的一项主要误差。目前,国际上通用的方法是利用一套可移动的双向校准设备实现对两套卫星双向设备时延差的校准。该方法存在设备成本高、占用通信卫星资源且对天气条件要求较高等问题。随着i GMAS站和其他监测站点的建设,越来越多站点的接收机监测数据资源可用。提出一种利用各站点监测数据实现对卫星双向设备时延差的校准方法。当卫星双向比对两地同时具有监测数据可用时,可以通过事后数据处理的方式校准两地卫星双向设备的时延差。校准的主要思路是利用精密星历、钟差和电离层产品,从每颗星的伪距测量值中扣除传播路径中的各项延迟,得到本地与导航系统时间的时差。通过对所有可见星的时差结果进行加权、滤波,并扣除接收机间的相对时延,得到比对两地的全视站间钟差。最后,通过与同时段的卫星双向结果进行比较,得到两地卫星双向设备的时延差,校准精度优于1 ns。虽然该方法无法实现亚纳秒量级的校准,但是可以较为简单地标定出两地卫星双向设备的时延差,可以满足纳秒级的时间同步应用需求。  相似文献   

9.
时间频率量值源头的独立自主是建设我国综合 PNT 体系的重要基础。 为进一步评估基于我国国家秒长基准的原子时 标守时能力,利用改进的有限脉冲响应钟差预测与频率调控方法,对激光冷却铯原子喷泉钟与氢钟的频差实测数据进行后处 理,分别产生了自主型时标和溯源型时标。 通过国际原子时合作链路将两个时标与协调世界时进行了长期比对实验,结果表 明:2021 年 12 月~2022 年 12 月期间,两个时标的时间偏差均优于±4 ns、频率稳定度均优于 8×10 -16 / 5 d。  相似文献   

10.
传统卫星共视法的共视周期为16 min,其存在间断及数据处理滞后的特性。采用改进的卫星共视法,解决了传统卫星共视法存在间断,且不能灵活设置共视周期及实时输出比对结果的问题。基于标准时间远程复现原理,以国家标准时间UTC(NTSC)作为基准,基于UTC(NTSC)远程复现系统,能在用户所在地复现出与标准时间同步的时间频率信号,用户以高稳晶振作为复现终端的信号源,分析了不同共视周期下的远程复现结果,根据高稳晶振的特性,试验分别采取1、5及10 min作为共视周期进行标准时间远程复现,3种不同共视周期复现比对结果显示,复现信号与标准时间UTC(NTSC)的偏差均小于10 ns。共视周期为1 min时,高稳晶振的复现信号同步效果最佳,其所复现的信号与标准时间同步偏差小于5 ns,当取样间隔为10 000 s时,频率稳定度为2.72×10-13,10万秒时的频率稳定度为1.40×10-14,远优于高稳晶振自由运行的状态。  相似文献   

11.
惯性/卫星组合导航系统结合精密单点定位技术可有效提高导航定位精度。但精密单点定位技术一般需采用双频接收机,成本较高;同时该系统中采用载波相位作为部分或全部观测量,极容易受到周跳的影响而导致精度下降和系统不稳定。针对上述问题,设计了一种惯性/卫星精密定位紧组合导航系统以及基于动态周跳补偿的鲁棒滤波算法。该系统采用低成本的单频接收机(SFGPS),以精密单点定位技术(PPP)处理过的伪距和载波相位作为观测信息,与惯性导航系统(INS)等效观测量进行紧组合,建立了相应紧组合观测模型并引入周跳作为信息融合滤波状态模型中的状态量,以滤波器信息构建周跳检测统计量并对周跳幅值进行识别和估计,实时补偿观测量以提高观测信息精度,同时以前述周跳估计的结果对状态模型中周跳状态量部分滤波参数进行实时调节。上述方法通过动态补偿周跳误差提高导航精度,通过滤波器参数自适应调节提高滤波稳定性。仿真结果验证了该系统模型及算法的有效性。  相似文献   

12.
一种地面连续运行参考站实时质量控制算法   总被引:1,自引:0,他引:1       下载免费PDF全文
王琰  张传定  胡小工  郭睿 《仪器仪表学报》2016,37(11):2506-2513
提出了一种适用于地面连续运行参考站(CORS)的实时数据质量控制算法,该算法充分利用地面连续运行参考站GPS卫星精密单点定位得到的载波相位观测量的验后相位残差时间序列,对监测站的多路径误差进行建模。通过设置一定高度角和水平角大小的格网,计算落入相应格网的载波相位观测量验后残差的均值与标准差,将所得均值与标准差作为地面连续运行参考站的载波相位观测量在该方向的多路径误差,并给出了其具体计算步骤。通过10个IGS监测站的实测数据仿真计算表明,该算法能够显著修正载波相位观测量中的多路径误差,当格网设为0.5°×0.5°时,经过多路径误差改正后的相位观测量残差的精度提高了大约30%。最后采用抗差估计,利用载波相位观测量验后残差格网的均值与标准差,对实时精密单点定位(PPP)的载波相位观测量进行质量控制。实测数据表明,在监测站数据存在粗差时,能够显著提高实时PPP的精度,大约提高39.7%。  相似文献   

13.
The results of international time and frequency comparisons between INPL reference and BIPM using GPS satellite system are presented. The uncertainty of time and frequency comparison by the one-way satellite time transfer method is discussed. Ionospheric delay contribution to this uncertainty is evaluated. The diurnal, seasonal and long-term variations of ionospheric delay are presented and discussed. Ionospheric delay has daily and seasonal oscillations with amplitudes of about 20–60 and 20 ns, respectively. These oscillations are due to variations of solar activity and the variations of total electron content in ionosphere. Long-term variations of ionospheric delay correlate with 11-year sunspot cycle. The difference between ionospheric delay values at minimum (in 1996) and maximum (in 2002) solar activity is 3 times. The increased values of ionospheric delay have caused the increase of the standard deviation of the time comparison results in the same proportion.  相似文献   

14.
为了实现~(87)Sr原子光钟的闭环运行,根据将超稳激光频率锁定在钟跃迁超精细能级自旋极化谱双峰中间的锁频原理,设计和实现了锶原子光钟闭环控制系统。首先,详细分析了~(87)Sr原子光钟闭环运行的具体需求,包括冷原子制备及钟跃迁探测、闭环锁定等阶段中所需要的控制信号及其时序;然后,根据该需求设计了时序控制和频率控制的物理系统;最后,利用LabVIEW虚拟仪器开发平台和NI硬件系统设计了~(87)Sr原子光钟的闭环运行的自动化控制程序。实验结果显示,采样时间为3 000 s的光钟频率稳定度为5.7×10~(-17),拟合得到的环内稳定度为5×10~(-15)/τ~(1/2),表明该控制系统的精度符合锶原子光钟的闭环运行要求。  相似文献   

15.
使用改进的拉普拉斯算法对人造卫星进行轨道预测时,在卫星仰角过高及卫星过顶点时刻其外推精度都较低,无法满足轨道预测的精度要求。本文基于对外推数据和实测数据的分析,提出了基于时间校正的轨道预测方法。该方法首先对外推数据和实测数据进行坐标旋转,然后用实测数据对外推数据进行时间校正,从而获得高精度的卫星轨道预测数据。利用水平式光电设备对卫星进行了跟踪实验。实验中使用了大于60s时长的高精度自动跟踪数据,先进行运动方程的拟合,然后进行时间校正,外推出了超过20s时长的高精度预测数据,且在卫星过顶点时刻,预测偏差可以保持在3″左右。实验结果表明,该方法有效地提高了卫星在高仰角时刻的轨道预测精度和保精度跟踪时间。  相似文献   

16.
自抗扰技术在卫星姿态模拟系统中的应用   总被引:7,自引:4,他引:3  
建立了高精度卫星姿态模拟系统用于光通信地面仿真试验,针对卫星轨迹特点,设计了一种改进的自抗扰控制算法。介绍了自抗扰控制技术的特点和控制原理,提出改进的伺服算法,为自抗扰算法引入了选择性积分项。针对系统±10″动态误差要求,设计了多阈值非线性函数,并添加状态判断模块实时更改非线性函数参数。同时,给出了算法主要参数的整定原则。然后,基于控制器开放伺服功能,给出了自抗扰控制的实现方法和计算流程。实验结果表明:系统具有良好的连续加减速能力,跟踪斜坡信号的动态误差为±6″;经对比,在跟踪卫星姿态轨迹时,自抗扰控制的抗干扰能力优于PID控制,跟随误差达到±7″,满足高精度姿态仿真要求。  相似文献   

17.
针对时栅位移传感器对信号噪声和插补时钟频率稳定性敏感及需要时钟频率高的问题,提出了一种基于数字锁相放大技术的时栅位移传感器信号处理方法。该方法用STM32F4微处理器同步产生激励信号和采集时栅输出信号,不需采集正交参考信号,将正交参考信号和输出信号送入正交矢量型数字锁相放大器,实现角位移检测。研究了基于数字锁相放大技术的时栅传感器信号处理原理和算法,设计了A/D采集电路和窄带低通数字滤波器。仿真和试验表明:在信号噪声较大条件下,时栅位移传感器的误差控制在±1.1″以内,显著提高了精度。该方法只需采集一路感应信号即可实现传感器角位移检测,优化和简化了电路结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号