首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fiber preform was studied by polarized light microscope (PLM) and scanning electronic microscope(SEM). The experimental results indicate that the amount of pyrolytic carbon deposited on the surface of chopped carbon fiber is more than that on the surface of long carbon fiber. The reason is the different porosity between the layer of chopped carbon fiber and long carbon fiber. The carbon precursor gas which passes through the part of chopped carbon fibers decomposes and deposits on the surface of chopped carbon fiber. The pyrolytic carbon on the surface of long carbon fibers is produced by the carbon precursor gas diffusing from the chopped fiber and the Z-d fiber. Uniform pore distribution and porosity in preform are necessary for producing C/C composites with high properties.  相似文献   

2.
A 2D woven graphite fibers reinforced aluminum matrix composite with 50%Grf (volume fraction) was fabricated by the squeeze-casting technology, and its microstructure and mechanical properties were investigated. The results show that the composite is dense, the graphite fibers are distributed uniformly in the composite. TEM observation indicates the bonding between fiber and matrix is good and little interfacial reaction is found in the Grf/Al composite. This is attributed to the better stability of graphite fiber and the fabrication process minimizing the contact time between fiber with matrix at high temperatures. The 2D woven Grf/Al composite exhibites better mechanical properties with tensile strength, bending strength and elastic modulus of 366.2, 519.7 and 110.7 GPa, respectively." SEM images suggeste that the fracture is irregular and some pulled-out fibers are found, which indicats that the high strength of fiber is not degraded.  相似文献   

3.
Two kinds of unidirectional PAN M40 carbon fiber(55%,volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion properties were investigated.Results showed that the combination between aluminum alloy and fibers was well in two composites and interface reaction in M40/5A06Al composite was weaker than that in M40/6061Al composite.Coefficients of thermal expansion(CTE) of M40/Al composites varied approximately from(1.45-2.68)×10-6 K-1 to(0.35-1.44)×10-6 K-1 between 20 °C and 450 °C,and decreased slowly with the increase of temperature.In addition,the CTE of M40/6061Al composite was lower than that of M40/5A06Al composite.It was observed that fibers were protruded significantly from the matrix after thermal expansion,which demonstrated the existence of interface sliding between fiber and matrix during the thermal expansion.It was believed that weak interfacial reaction resulted in a higher CTE.It was found that the experimental CTEs were closer to the predicted values by Schapery model.  相似文献   

4.
With the 40Cr steel couple coated by Cr, the sliding tribology behavior of two kinds of C/C composites with different matrix was tested using a M2000 wear tester. The results show that with the increasing of load, the friction coefficients of the composite with resin carbon matrix(RC) decrease quickly from 0.156 under 60 N to 0.123 under 150 N, while those of the composite with rough lamination/smooth lamination/resin carbon (RL/SL/RC) change only between 0.122 and 0.101. The wear volume loss of the two composites increases except for under 100 N. The SEM morphology shows that with the increasing of load, the worn surface of the composite with RC becomes more and more integrated while the size of the debris becomes less and less. The Raman spectrum shows that the graphitization on the worn surface of the fibers draws down after 100 N, the graphitization of the boundary between the fiber and the matrix carbon rises up to 150 N, but the graphitization of the matrix carbon draws down all the while. With the increasing of load, the graphitization on the worn surface of all the worn areas becomes closer and closer, which indicates the worn surface of the different component has the similar friction ability. The composites with RL/SL/RC have better tribological characteristic than the composite with RC.  相似文献   

5.
The CJSi3N4 composites were prepared by hot-press sintering method using α-Si3N4 power, short carbon fibers and La2O3-Y2O3 sintering additives. The mechanical and microwave dielectric properties of CjSi3N4 composites were studied and discussed. The results show that the addition of the short carbon fibers can not destroy the relative density of the sintered samples, but it deteriorates the flexural strength of the sintered samples, so the flexural strength of the silicon nitride matrix is the highest among the samples. The real part (ε3 and the imaginary part (ε'3 of the permittivity of CsfCSi3N4 composites greatly increase with increasing voltmae fraction of the short carbon fibers, achieve the maximum 73.1 and 101.5, respectively. A strong frequency dependence of the imaginary part (ε″) of the permittivity is observed.  相似文献   

6.
The different copper coatings with thickness varying from 0.3 lain to 1.5 lain were deposited on carbon fibers using either eleetroless plating or electroplating method. The coated fibers were chopped and composites were fabricated with melting aluminum at 700 ℃. The effect of the copper layer on the microstructure in the system was discussed. The results show that the copper layer has fully reacted with aluminum matrix, and the intermetallic compound CuAl2 forms through SEM observation and XRD, EDX analysis. The results of tensile tests indicate that composites fabricated using carbon fibers with 0.7-1.1 lain copper coating perform best and the composites turn to more brittle as the thickness of copper coating increases. The fracture surface observation exhibits good interface bonding and ductility of the matrix alloy when the thickness of copper coating is about 0.7-1.1 μm.  相似文献   

7.
NUMERICAL STUDY ON CREEP DAMAGE OF COMPOSITES AT HIGH TEMPERATURE   总被引:1,自引:0,他引:1  
A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABA QUS. The fiber breakage results in a new crack. The results show that the stress concentration factor resulted from the fiber breakage increases with the creep time. The creep damage takes place near the crack, and then grows in the matrix along a certain angle, up to the total failure. The influences of the ratio of modulus of the fiber to the matrix (Ef/Em) on the creep deformation, damage and stress distributions have been studied. With the increasing Ef/Em, the damage in the matrix increases. Analysis on the different ductility of matrix shows that the creep damage of low ductile matrix composites is higher than high ductile matrix composites.  相似文献   

8.
The cenospheres/AZ91D composites were fabricated by melt stir method. The phases, microstructure and tensile fracture morphology of the composites were analyzed using XRD, Olympus metallurgical microscopy and SEM methods. The thermal expansion coefficient(CTE) and tensile properties were measured. The results showed that the cenospheres distribute uniformly in the Mg alloy matrix and refine the matrix microstructure. Mg2 Si and MgO were found in addition to α-Mg and β-Mg17Al12 phases using XRD. The CTE of the composites reduced after the cenospheres are added. The yield strength of the composites increases significantly with an increase in the mass fraction and a decrease in the size of the cenospheres. The tensile strength of the composites achieves maximum when the mass fraction of cenospheres is 9wt.% and the size of cenospheres is 80 μm. The fracture mechanism of the composites is cleavage fracture.  相似文献   

9.
The constant increase in power and heat flux densities encountered in electronic devices fuels a rising demand for lightweight heat sink materials with suitable thermal properties.In this study,discontinuous pitch-based carbon fiber reinforced aluminum matrix(Al-CF) composites with aluminum–silicon alloy(Al–Si) were fabricated through hot pressing.The small amount of Al–Si contributed to enhance the sintering process in order to achieve fully dense Al–CF composites.A thermal conductivity and CTE of 258 W/(m K) and 7.0 9 10-6/K in the in-plane direction of the carbon fibers were obtained for a(Al95 vol%+ Al–Si5 vol%)-CF50 vol%composite.Carbon fiber provides the reducing of CTE while the conservation of thermal conductivity and weight of Al.The achieved CTEs satisfy the standard requirements for a heat sink material,which furthermore possess a specific thermal conductivity of 109 W cm3/(m K g).This simple process allows the low-cost fabrication of Al–CF composite,which is applicable for a lightweight heat sink material.  相似文献   

10.
Al2O3(1)/TiAl composites were synthesized by an exothermic reaction method using Ti, Al and TiO2 powders doped with Nb205 and La2O3. The effect of Nb205 and La2O3 additives on the growth and morphology of the fibers, the phases and microstructure of the composites were investigated by means of XRD and SEM. The result indicates that the in situ alumina fiber can be developed in Ti-Al matrix with the Ti/Al mole ratio of 1:2 1:7, and the addition of rare earth powders can improve the dispersion of the fibers in the matrix and increase the length-to-diameter ratio of the fibers.  相似文献   

11.
以天然气为前驱气体,整体碳毡和2D针刺碳毡为预制体,采用热悌度化学气相渗积技术制备了两种C/C复合材料,其表观密度均为1.74g/cm^3。借助光学显微镜和扫描电子显微镜观察了热解碳基体的生长特征和微观形貌,采用热膨胀仪测量了两种材料的热膨胀系数(CTE),研究了由不同预制体增强C/C复合材料的CTE,解释了造成材料不同方向CTE差异的主要原因。结果表明,随着温度升高,材料A和B的CTE是逐渐升高的,且Z向CTE值均大于XY向。当两种材料在Z向的纤维体积分数接近时,随着XY方向纤维体积分数增大,材料在Z向的CTE增大,在XY向的CTE降低,两种材料存XY和Z向的CTE旱如下分布:αB—z〉dAz〉αA—xy〉αBxY-C/C复合材料的CTE主要取决于纤维体积分数和排市、碳基体及材料中的孔隙分布情况,前者起决定作用。  相似文献   

12.
三维编织复合材料的性能与编织参数密切相关,为了研究碳纤维编织复合材料齿轮的弯曲性能及其与编织参数的关系,提出复合材料及齿轮弯曲性能预测模型。基于代表性体积单胞法和均质化思想建立复合材料的细观、宏观双尺度模型,采用体积平均法、借助有限元手段预测复合材料及齿轮的弯曲性能。并且,采用四步法编织及模压成型方法制备两对碳纤维编织复合材料齿轮,通过试验获得特定编织参数下复合材料及齿轮的弯曲性能。预测结果与试验结果吻合良好,验证了预测模型的准确性。最后,进行了多组编织参数下复合材料及齿轮弯曲性能的预测,得到了编织角和纤维体积分数对复合材料及齿轮弯曲性能的影响规律,并给出了使复合材料齿轮弯曲性能最佳的编织参数。  相似文献   

13.
Three types of carbon/carbon (C/C) composites were manufactured by densifying the needled carbon fiber preform through resin and pitch impregnation/carbonization repeatedly, as well as propylene pyrolysis by chemical vapor infiltration plus carbonization after the resin impregnation/carbonization. The densification behavior and performances (involving electric, thermal, and mechanical properties, as well as impurity) of the C/C composites were investigated systematically. The results show that besides the processing and testing conditions, the electric resistivity, thermal conductivity (TC), coefficient of thermal expansion (CTE), strength, and fracture, as well as impurity content and composition of the C/C composites were closely related to the fiber orientation, interfacial bonding between carbon fiber and carbon matrix, material characteristics of the three precursors and the resulting matrix carbons. In particular, the resin-carbon matrix C/C (RC/C) composites had the highest electric resistivity, tensile, and flexural strength, as well as impurity content. Meanwhile, the pitch-carbon matrix C/C (PC/C) composites possessed the highest TC and CTE in the parallel and vertical direction. And most of the performances of pyro-carbon/resin carbon matrix C/C composites were between those of the RC/C and PC/C composites except the impurity content.  相似文献   

14.
Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C composites was tested under two different stress levels. The residual strength and modulus of all fatigued samples were tested to investigate the effect of maximum stress level on fatigue behavior of C/C composites. The microstructure and damage mechanism were also investigated. The results showed that the residual strength and modulus of fatigued samples were improved. High stress level is more effective to increase the modulus. And for the increase of flexural strength, high stress level is more effective only in low cycles. The fatigue loading weakens the bonding between the matrix and fiber, and then affects the damage propagation pathway, and increases the energy consumption. So the properties of C/C composites are improved.  相似文献   

15.
测量以纯树脂炭、粗糙层热解炭和光滑层热解炭为基体的3种炭/炭复合材料的热膨胀系数,并采用有限元分析软件,模拟这3种炭,炭复合材料在飞机正常着陆能量条件下的热应力场,研究热膨胀系数对炭,炭复合材料热应力场及其摩擦性能的影响.结果表明:3种炭/炭复合材料在z方向上的热膨胀系数大于在X和y方向的,且热膨胀系数均随着温度的升高而逐渐增大,其中,基体为粗糙层热解炭的炭/炭复合材料的热膨胀系数最小,纯树脂炭试样的次之,光滑层热解炭试样的最大;在制动过程中,炭/炭复合材料摩擦表面产生的热应力与材料的热膨胀系数相关,材料的热膨胀系数越大,产生的热应力越大;过大的热应力使纯树脂炭试样具有相对稳定的摩擦曲线,在较大热应力的作用下,光滑层热解炭试样的摩擦曲线不稳定,影响其摩擦性能.  相似文献   

16.
To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 sol with a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as the raw material. Characteristics and mullitization of the sol were analyzed throughly. It is found that the formation of mullite is basically completed at 1300 °C and the gel powders exhibit favorable sintering shrinkage. The 3D C/mullite composites without interfacial coating were fabricated through the route of vacuum impregnation-drying-heat treatment. Satisfied mechanical properties with a flexural strength of 241.2 MPa and a fracture toughness of 10.9 MPa·m1/2 are obtained although the total porosity reaches 26.0%. Oxidation resistances of the composites at 1200, 1400 and 1600 °C were investigated. Due to the further densification of matrix, the 3D C/mullite composites show tiny mass loss and their mechanical properties are well retained after oxidation at 1600 °C for 30 min.  相似文献   

17.
利用挤压铸造法制备了A1203 C/ZLl09短纤维混杂金属基复合材料,并探讨了A1203纤维体积分数为12%时,C纤维含量对该混杂复合材料摩擦磨损性能的影响。结果表明:随着C纤维体积分数的增加,复合材料的摩擦因数和磨损率逐渐降低。12%A1203和4%C短纤维的协同作用使复合材料从轻微磨损到急剧磨损的临界转变载荷比基体合金提高了1倍。当载荷低于临界载荷时,复合材料的主要磨损机制为犁沟磨损和层离,C纤维的加入有利于磨损表面裂纹尺寸的减小。但随着载荷的逐渐增加并发生严重磨损时,基体和复合材料的磨损机制均为严重的粘着磨损甚至局部熔化磨损。  相似文献   

18.
采用随机顺序吸附法建立了Csf/Mg复合材料周期性体胞模型,对Csf/Mg复合材料的拉伸性能进行了有限元模拟.对比拉伸试验结果,验证了该周期性体胞模型的有效性.模拟结果显示:随着Csf/Mg复合材料中纤维体积分数的提高,其拉伸性能不断提高,弹性模量、屈服强度和抗拉强度均随之增加;平行于外载方向的纤维承载了最大的应力,而与外载方向约呈60°角的纤维承受的应力最小;平行于外载方向的纤维,其端面附近的基体也承受了较大应力;在拉伸变形的过程中,基体的塑性变形由纤维附近区域向基体其他区域扩展.  相似文献   

19.
采用温压?原位反应法制备C/C-SiC复合材料,利用QDM150型摩擦试验机研究短炭纤维(SCF)长度和纤维体积分数对C/C-SiC制动材料摩擦磨损性能的影响。结果表明:C/C-SiC制动材料能够保持较高且稳定的摩擦因数;SCF的体积分数将影响C/C-SiC制动材料的摩擦磨损性能,纤维体积分数为10%时,材料具有适中的摩擦因数和较低的磨损率;SCF长度对C/C-SiC制动材料的摩擦磨损性能有显著影响,炭纤维长度为12 mm时,材料具有最佳的摩擦磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号