首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A systematic study of catalytic oxidation of sulfur dioxide in a fixed bed reactor operated in flow reversal mode was made. A heterogeneous transient model of the reactor was developed. The global rate equations and the heat transfer parameter correlation were obtained, based on a series of previous experiments. The experiments of unsteady-state oxidation of low concentration SO2 were conducted in a bench-scale fixed bed reactor, packed with a domestic commercial catalyst. The model can successfully predict the transient concentration and temperature profiles when a correction factor is introduced to the global rate equations.  相似文献   

3.
The effects of the reaction variables in the operation of a fixed-bed reactor for oxidation ofo-xylene over V2O5/TiO2 catalysts were studied experimentally using a bench reactor. Reaction temperature, feed flow rate and feed concentration ofo-xylene were found to have significant effects on the product distribution and the temperature profile in the reactor. Drastic enhancements ofo-xylene oxidation reaction were observed at some conditions, which was ascribed to the effect of heat accumulated in the bed and indicated a possible way to increase the productivity in the industrial condition. This paper was presented at the 8th APCChE (Asia Pacific Confederation of Chemical Engineering) Congress held at Seoul between August 16 and 19, 1999.  相似文献   

4.
An integrated microreaction system of a microreactor with a Taylor–Couette reactor (TCR) for continuous synthesis of 2,2′-dibenzothiazole disulfide has been developed, so as to improve the process efficiency and the stability with solid product generation compared with the current batch process. The homogeneous oxidation with hydrogen peroxide catalyzed by phosphotungstic acid was applied. In the microreaction system, two feedstocks can be rapidly mixed through the microreactor; stable particle flow ability and high conversion can be achieved through the TCR, due to the flow characteristics of high shear stress and limited back-mixing. Under the conditions of stable operation, the conversion can reach over 90%. The purity of the product is over 99%. The space–time yield can reach 160 g L−1 h−1, which is much higher than that in the batch reactor. The microreaction system is stable for long-term running, which provides an effective design strategy for continuous flow processes with solid generation.  相似文献   

5.
Porcine liver esterase was entrapped in natural polysaccharides K‐carrageenan and retention of its activity was determined using p‐nitrophenyl acetate as the substrate. The optimum pH for esterase activity of entrapped enzyme showed a little shift towards acidic side. Immobilized enzyme showed improved thermal and storage stability. The entrapped esterase retained 50% of its activity after eight repetitive cycles. Michaelis constant Km for the free and entrapped enzymes was almost same indicting no conformational change during immobilization. Maximum velocity Vmax was observed to decrease on immobilization. The free and entrapped esterase was used for selective hydrolysis of methyl 2‐acetoxybenzoate to methyl 2‐hydroxybenzoate in batch process as well as in a fixed bed reactor. The hydrolysis was observed to be 99% within 2 h for free as well as immobilized enzyme in batch process. The rate of hydrolysis was found to depend on pH. The turn over number of selective hydrolysis in batch and fixed bed reactor was 3.08 × 106 and 1.19 × 107, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
对三氟乙醇气相催化氧化制备三氟乙醛和三氟乙酸的工艺进行了研究,确定了以分子氧为氧化剂 、负载型V2O5为催化剂,采用固定床反应器进行反应,气相色谱法检测产品中的三氟乙醛和三氟乙酸的含量,并采用XRD和BET等分析方法对催化剂的性能进行了探讨。  相似文献   

7.
汪洋  任珉  袁浩  王保正 《应用化工》2006,35(9):719-722
介绍了径向反应器在流体流动方面的特点和优点,对径向反应器的数学模型研究的进展进行了详细的讨论,介绍了径向反应器在合成氨、CO变换、甲醇氧化重整制氢、催化重整、乙苯催化脱氢制苯乙烯等方面的应用。认为通过计算流体力学的方法,对径向反应器的流动行为进行模拟是径向反应器发展的趋势之一,结合径向反应器的优点,进一步拓展径向反应器的应用范围是其发展趋势之一。  相似文献   

8.
An experimental demonstration of the oxidative dehydrogenation of propane (ODHP) in a lab-scale packed bed membrane reactor has been performed. Experiments were carried out with both premixed and distributed oxygen feed over a Ga2O3/MoO3 catalyst and compared, and the influence of the gas composition, flow rate and the extent of dilution was investigated. The experimental results were found to compare very well with detailed reactor simulations. The results revealed that, in comparison with conventional reactor concepts for the ODHP (fixed bed with premixed reactants feed), a significantly higher propylene yield can be achieved at higher propane conversions in a packed bed membrane reactor.  相似文献   

9.
The partial oxidation of butane to maleic anhydride was studied in a conventional fixed bed as well as a novel reactor configuration consisting of a porous metallic membrane immersed in a gas–solid fluid bed. The diameter of both reactors was at a commercial scale greater than 30 mm. A range of gas flow rates, temperatures and butane concentrations were tested. Maleic anhydride yield was generally higher in the membrane reactor due to higher butane conversion. Maleic productivity in the fixed bed equalled that observed in the membrane reactor when the gas–solid fluid bed was maintained at a higher temperature of as much as 30 °C. The butane feed rate to the membrane reactor was limited by hot spots. These hot spots were unanticipated and underscore the importance of increasing heat transfer in order to commercialize this technology.  相似文献   

10.
11.
A reactor has been developed to produce high quality fatty acid methyl esters (FAME) from waste cooking palm oil (WCO). Continuous transesterification of free fatty acids (FFA) from acidified oil with methanol was carried out using a calcium oxide supported on activated carbon (CaO/AC) as a heterogeneous solid-base catalyst. CaO/AC was prepared according to the conventional incipient-wetness impregnation of aqueous solutions of calcium nitrate (Ca(NO3)2·4H2O) precursors on an activated carbon support from palm shell in a fixed bed reactor with an external diameter of 60 mm and a height of 345 mm. Methanol/oil molar ratio, feed flow rate, catalyst bed height and reaction temperature were evaluated to obtain optimum reaction conditions. The results showed that the FFA conversion increased with increases in alcohol/oil molar ratio, catalyst bed height and temperature, whereas decreased with flow rate and initial water content in feedstock increase. The yield of FAME achieved 94% at the reaction temperature 60 °C, methanol/oil molar ratio of 25: 1 and residence time of 8 h. The physical and chemical properties of the produced methyl ester were determined and compared with the standard specifications. The characteristics of the product under the optimum condition were within the ASTM standard. High quality waste cooking palm oil methyl ester was produced by combination of heterogeneous alkali transesterification and separation processes in a fixed bed reactor. In sum, activated carbon shows potential for transesterification of FFA.  相似文献   

12.
Galvanostatic electrochemical oxidation of dimethylsulphoxide (DMSO) to dimethylsulfone (DMSO2) has been effected at a dimensionally stable anode (DSA) under different conditions of current density and reaction media, in both a batch and a flow reactor (membrane cell with an ion-exchange membrane between the two working electrodes) functioning in batch recirculation mode. Excellent yields of the sulfone have been obtained under both conditions. The product has been characterized by various physicochemical techniques. The operational conditions giving maximum yield of the product have been established. The electrochemical oxidation of DMSO has also been studied by cyclic voltammetry at a glassy carbon (GC) electrode. The mechanism of electrochemical oxidation and the advantages of the present methods over existing ones, are discussed.  相似文献   

13.
The heterogeneously catalyzed oxidative dehydrogenation of isobutyric acid in a fixed bed reactor using molybdenum (Mo) heteropoly acids as catalysts shows a loss of Mo into the gas phase due to the formation of volatile Mo-complexes under reaction conditions. To avoid this loss of catalyst and to keep the catalytic material in the fixed bed and thus increase the catalyst's lifetime, the process has been performed under periodic flow reversal within the reactor. In this work, periodic flow reversal is tried in a semi-pilot test reactor as a method to fix the Mo-compounds in the catalyst bed. The influence of this mode of operation on the temperature profile in the reactor, on conversion, selectivity and yield of the product methacrylic acid is investigated in comparison with the process without periodic flow reversal.  相似文献   

14.
A time- and space-dependent model based on the piston-dispersion-exchange model for liquid flow was developed to analyze the performance of two-phase upflow and downflow fixed bed reactors and was applied to the catalytic SO2 oxidation. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the PDE model was used to interpret the obtained RTD curves. Gas-liquid mass transfer parameters were determined by a stationary method based on the least square fit of the calculated concentration profiles in gas phase to the experimental values. It is shown that two-phase downflow fixed bed reactor performs better at low liquid flow rates, while two-phase downflow fixed bed reactor performs better at low liquid flow rates, while two-phase upflow performs better at high liquid flow rates.  相似文献   

15.
阴极冷却固定床反应器电合成乙醛酸   总被引:1,自引:0,他引:1  
以过饱和草酸水溶液为阴极液,盐酸溶液为阳极液,在阴极冷却固定床电化学反应器内草酸电解合成乙醛酸。考察了电流密度、电极和电解液温度、阴极材料对合成乙醛酸时空产率和电流效率的影响。结果表明,阴极冷却固定床反应器是一种较理想的反应器,用石墨板作阳极,铅作阴极,电流密度为400.5A/m2,阴极空速u0=0.505m/s,电解温度为20℃左右时,电解1.5h,在阴极可得到质量分数为5.45%的乙醛酸溶液,平均时空产率可达0.12kg/dm3·h以上。  相似文献   

16.
The performance of mixed conducting ceramic membrane reactors for the partial oxidation of methane (POM) to syngas has been analyzed through a two‐dimensional mathematical model, in which the material balance, the heat balance and the momentum balance for both the shell and the tube phase are taken into account. The modeling results indicate that the membrane reactors have many advantages over the conventional fixed bed reactors such as the higher CO selectivity and yield, the lower heating point and the lower pressure drop as well. When the methane feed is converted completely into product in the membrane reactors, temperature flying can take place, which may be restrained by increasing the feed flow rate or by lowering the operation temperature. The reaction capacity of the membrane reactor is mainly determined by the oxygen permeation rate rather than by the POM reaction rate on the catalyst. In order to improve the membrane reactor performance, reduction of mass transfer resistance in the catalyst bed is necessary. Using the smaller membrane tubes is an effective way to achieve a higher reaction capacity, but the pressure drop is a severe problem to be faced. The methane feed velocity for the operation of mixed conducting membrane reactors should be carefully regulated so as to obtain the maximum syngas yield, which can be estimated from their oxygen permeability. The mathematical model and the kinetic parameters have been validated by comparing modeling results with the experimental data for the La0.6Sr0.4Co0.2Fe0.8O3‐α (LSCF) membrane reactor. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

17.
《Applied Catalysis A: General》2002,223(1-2):225-238
The effect of catalyst fluidization on the conversion of methane to syngas in methane reforming with CO2 and H2O in the presence of O2 under pressurized conditions was investigated over Ni and Pt catalysts. Methane and CO2 conversion in the fluidized bed reactor was higher than those in the fixed bed reactor over Ni0.15Mg0.85O catalyst under 1.0 MPa. This reactor effect was dependent on the catalyst properties. Conversion levels in the fluidized and fixed bed reactor were almost the same over MgO-supported Ni and Pt catalysts. It is suggested that this phenomenon is related to the catalyst reducibility. On a catalyst with suitable reducibility, the oxidized catalyst can be reduced with the produced syngas and the reforming activity regenerates in the fluidized bed reactor. Although serious carbon deposition was observed on Ni0.15Mg0.85O in the fixed bed reactor, it was inhibited in the fluidized bed reactor.  相似文献   

18.
The partial oxidation of butane to maleic anhydride in a membrane reactor with improved heat transfer through the wall has been studied in this work. The reactor consisted of a catalytic fixed bed with sintered metal membrane wall that allows the gradual feed of air from the external fluidized bed. The influence of the most important design and operation variables (reactor length, gas flow rate, inlet temperature, butane inlet concentration, and air gas flow rate) on butane conversion and maleic anhydride selectivity has been studied by means of computer simulations using an experimentally-validated detailed 2D model. The performance of this reactor was systematically compared to the corresponding conventional fixed bed reactor. The membrane reactor has been found to provide slightly higher selectivity than the fixed bed reactor. Moreover, in the membrane reactor, the mixing of butane and air takes place through the wall directly inside the catalytic bed. Since solid beds avoid flame propagation, the process can be operated with higher butane inlet concentrations under safety conditions. Hence, the fluidized bed membrane reactor represents an interesting alternative for industrial-scale operation.  相似文献   

19.
Catalyst instabilities during the liquid phase partial oxidation of methane   总被引:2,自引:0,他引:2  
A promising catalytic system for the low temperature oxidation of methane to a methanol derivative has been investigated under both batch and semi-continuous operation in two different reactor types. The system comprises of a bimetallic palladium and copper(II) chloride catalyst contained in a trifluoroacetic acid (TFA) and an aqueous phase. Methane, oxygen and a co-reductant carbon monoxide constitute the gas phase. Typical operating conditions were a temperature of 85 °C and a pressure of 83 bar.

The yields of the methyl trifluoroacetate product observed in this present work were less than those obtained in other batch autoclave works, which employed only 4 ml of liquid phase, compared with 50 ml in this study. Furthermore, an encouraging initial product formation rate of ca. 40 mol/m3 h, quickly decreased after the first hour, and came to an apparent end after only 2 h. This observation had not been reported previously.

Work performed in a semi-continuous porous tube reactor (300 ml of re-circulating liquid phase) also showed the same reaction characteristics as in the batch reactor. Thus, the deteriorating product formation rate cannot be attributed to gaseous reactant depletion (batch operation). The results suggest problems associated with catalyst instabilities, e.g. with the previously elucidated Wacker chemistry.  相似文献   


20.
The kinetics of the vapor phase oxidation of p-xylene over ferric molybdate catalyst were studied in an isothermal, differential, tubular flow reactor in the temperature range of 360 to 420° C. The major product obtained was p-tolualdehyde with small amounts of maleic anhydride and p-toluic acid. No terephthalic acid or CO2 were observed. The reaction rate data collected fit the redox model given by Equation 1. The values of activation energies Ex, Eo and frequency factors Ax, Ao obtained are 72, 63 kJ/mol and 0.64, 2.89 m3/kg catalyst s respectively. The reaction mechanism was established by studying the oxidation of p-tolualdehyde, toluic and terephthalic acids. It is concluded that the reaction follows a parallel-consecutive scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号