首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the study on remanent vortices attached to rough boundaries in superfluid 4He after the turbulent transition. We used 2.6 µm vibrating wires with smooth surfaces and rough surfaces, a cover box and slow cooling method, in order to investigate the effect of surface roughness on the condition and the number of vortices attached to a wire. The responses of the wire with smooth surfaces show large hysteresis at the turbulent transition. This result indicates that remanent vortices attached between the wire and surrounding boundaries cause turbulence. At first sweep of driving force of the wire with rough surfaces, we also observed hysteresis as large as the case of the smooth wire: at the other sweeps, however, small hysteresis was observed. These results indicate that once turbulence is generated at a wire velocity during first sweep, vortex lines newly attach between rough surfaces of the wire, which easily cause turbulence at a low wire velocity. Therefore, we conclude that a smooth wire can reduce the number of vortices attached to a wire.  相似文献   

2.
We report on the onset of turbulence in normal and superfluid 4He using several 13.5 μm diameter vibrating wire resonators placed in a cell, filtered from the surrounding helium bath. We measured the force-velocity characteristics of the wires in normal and superfluid helium over a velocity range up to several meters per second. The transition from laminar to turbulent behavior can be clearly identified. Surprisingly we find that, depending on the cooling history, turbulence in the superfluid does not always develop fully.  相似文献   

3.
An immersed object with high velocity oscillations causes quantum turbulence in superfluid 4He, even at very low temperatures. The continuously generated turbulence may emit vortex rings from a turbulent region. In the present work, we report vortex emissions from quantum turbulence in superfluid 4He at high temperatures, by using three vibrating wires as a turbulence generator and vortex detectors. Two detector wires were mounted beside a generator wire: one in parallel and the other in perpendicular to the oscillation direction of the generator. The detection times of vortex rings represent an exponential distribution with a delay time t 0 and a mean detection period t 1. The delay time includes the generation time of a fully developed turbulence and the time-of-flight of a vortex ring. At high temperatures, vortices are dissipated by relative motion between a normal fluid component and the vortices, resulting that only large vortex rings are reachable to the detectors. Using this method, we detected vortex rings with a diameter of 100 μm, comparable to a peak-to-peak vibration amplitude of 104 μm of the generator. The large vortices observed here are emitted anisotropically from the generator. The emissions parallel to the vibrating direction are much less than those perpendicular to the direction.  相似文献   

4.
We report the time-of-flight of quantized vortex rings generated by a vibrating wire in superfluid 4He which contains normal fluid component. A cover box of vibrating wires and slow cooling of superfluid reduce the number of vortices attached to wire surfaces, enabling us to study vortex rings propagating from a turbulent region. Using two vibrating wires as a generator and a detector of vortices, the time-of-flight of vortices propagating a distance of 0.88 mm was measured at 1.25 K. We find that the time-of-flights distribute from 0.06 s to 27.4 s, much larger than the lifetimes of circular vortex rings limited in the size of a generator amplitude. These results imply that large vortex rings with non-circular shape or vortex tangles are created by the generator, propagating slowly and colliding with the detector before complete disappearance.  相似文献   

5.
We have studied the resonance of a commercial quartz tuning fork immersed in superfluid 4He, at temperatures between 5 mK and 1 K, and at pressures between zero and 25 bar. The force-velocity curves for the tuning fork show a linear damping force at low velocities. On increasing velocity we see a transition corresponding to the appearance of extra drag due to quantized vortex lines in the superfluid. We loosely call this extra contribution “turbulent drag”. The turbulent drag force, obtained after subtracting a linear damping force, is independent of pressure and temperature below 1 K, and is easily fitted by an empirical formula. The transition from linear damping (laminar flow) occurs at a well-defined critical velocity that has the same value for the pressures and temperatures that we have measured. Later experiments using the same fork in a new cell revealed different behaviour, with the velocity stepping discontinuously at the transition, somewhat similar to previous observations on vibrating wire resonators and oscillating spheres. We compare and contrast the observed behaviour of the superfluid drag and inertial forces with that measured for vibrating wires.  相似文献   

6.
The motion of quantized vortices is studied using a vibrating wire in superfluid 4He. A vortex filtering method provides a superfluid practically free of remanent vortices in which the vibration of a wire cannot generate turbulence. Vortex lines are produced by cooling through the superfluid transition and remain forming bridges between a wire and a surrounding wall. Bridged remanent vortices increase the resonance frequency of a vibrating wire: the rate of an increase due to the remanent vortices is constant in a laminar flow regime and steeply increases in a turbulent flow regime with increasing wire velocity. These results suggest that oscillation of the bridged vortices provides a linear contribution to the wire vibration in the laminar flow regime, until instability occurs in the oscillation of the vortices, causing turbulence.   相似文献   

7.
No Heading We have investigated the laminar and the turbulent flow in superfluid 4He using a vibrating wire made of thin NbTi ( 2.5 m). The wire velocity as a function of applied force has shown a large hysteresis at the first cooling from normal fluid to the superfluid state. But after a couple of increasing and decreasing wire velocity we have found that the hysteresis vanished and the laminar and the turbulent flow are clearly separated at a critical velocity. The wire moving just after the first cooling must be influenced by remnant vortices nucleated through the superfluid transition. The appearance of the laminar flow below the critical velocity suggests that vortex strings on the wire seem to be selected as suitable sizes by a vibrating flow at higher velocities. We also measured the velocity dependence after immersing the wire directly into the superfluid and found that the laminar region expands up to a velocity much higher than the critical velocity observed above. This result indicates that remnant vortices are considerably reduced by the immersing method.PACS numbers: 67.40.Vs, 47.27.Cn  相似文献   

8.
We have investigated the behaviour of a large vibrating wire resonator in the B-phase of superfluid 3He at zero pressure and at temperatures below 200 μK. The vibrating wire has a low resonant frequency of around 60 Hz. At low velocities the motion of the wire is impeded by its intrinsic (vacuum) damping and by the scattering of thermal quasiparticle excitations. At higher velocities we would normally expect the motion to be further damped by the creation of quasiparticles from pair-breaking. However, for a range of temperatures, as we increase the driving force we observe a sudden decrease in the damping of the wire. This results from a reduction in the thermal damping arising from the presence of quantum vortex lines generated by the wire. These vortex lines Andreev-reflect low energy excitations and thus partially shield the wire from incident thermal quasiparticles.  相似文献   

9.
An oscillating obstacle generates quantum turbulence in superfluids, when vortices remained attached to obstacle surfaces or vortex rings collided with it during oscillation. Turbulence provides a source of vortices; however, the characteristics of these vortices are not clear. In the present work, we report the flight of vortices emitted from quantum turbulence in superfluid 4He at low temperatures, using vibrating wires as a generator and a detector of vortices. A vortex-free vibrating wire can detect only the first colliding vortex ring, though it will be refreshed after low vibration and be able to detect a vortex ring again. By measuring a period from the start of turbulence generation to the vortex detection repeatedly, we find an exponential distribution of time-of-flights with a non-detection period t 0 and a mean detection period t 1, suggesting a Poisson process. Both periods t 0 and t 1 increase with increasing distance between a generator and a detector. A vortex flight velocity estimated from period t 0 suggests that the sizes of the emitted vortex rings distribute to a range smaller than a generator thickness or a generator vibration amplitude. Vortices are emitted radially from a turbulence region, at least in the direction of oscillator vibration.  相似文献   

10.
We have investigated the turbulence transition of the superfluid 4He flow generated by a vibrating wire. For a 1.2-kHz vibrating wire, we observed intermittent switchings between laminar and turbulent flows. The switching rate decreases with increasing temperature above 100 mK, until no occurrence of the switchings at 350 mK. For a 2.4-kHz vibrating wire, we find that the switching rate is much lower than that of the 1.2-kHz vibrating wire even at low temperatures. This result indicates that a mechanism causing the switchings is influenced by the temperature and the oscillation frequency of the superfluid flow.  相似文献   

11.
We have measured the damping on a quartz tuning fork in the B-phase of superfluid 3He at low temperatures, below 0.3T c. We present extensive measurements of the velocity dependence and temperature dependence of the damping force. At the lowest temperatures the damping is dominated by intrinsic dissipation at low velocities. Above some critical velocity an extra temperature independent damping mechanism quickly dominates. At higher temperatures there is additional damping from thermal quasiparticle excitations. The thermal damping mechanism is found to be the same as that for a vibrating wire resonator; Andreev scattering of thermal quasiparticles from the superfluid back-flow leads to a very large damping force. At low velocities the thermal damping force varies linearly with velocity, but tends towards a constant at higher velocities. The thermal damping fits very well to a simple model developed for vibrating wire resonators. This is somewhat surprising, since the quasiparticle trajectories through the superfluid flow around the fork prongs are more complicated due to the relatively high frequency of motion. We also discuss the damping mechanism above the critical velocity and compare the behaviour with other vibrating structures in superfluid 3He-B and in superfluid 4He at low temperatures. In superfluid 4He the high velocity response is usually dominated by vortex production (quantum turbulence), however in superfluid 3He the response may either be dominated by pair-breaking or by vortex production. In both cases the critical velocity in superfluid 3He-B is much smaller and the high velocity drag coefficient is much larger, compared to equivalent measurements in superfluid 4He.  相似文献   

12.
Recently Finne et al. found a transition to the turbulent state in rotating superfluid 3He-B which is insensitive to the fluid velocity, but rather controlled by temperature. They reported that at low temperatures a few seed vortices, injected into a vortex-free region, developed through a transient turbulent state to a vortex array. The experimental observations were consistent with the numerical simulation of dynamics of quantized vortices. However, we do not understand well how the seed vortex follows the above scenario and, especially, how the turbulent vortices change to a vortex array. Although the previous numerical simulation was done for a rotating cubic vessel, we study here the vortex dynamics in a rotating cylindrical vessel which is more suitable for the comparison with the experiments. We developed a numerical method for calculating the vortex dynamics in a cylindrical vessel and investigated the vortex dynamics after a vortex seed loop was injected into a vortex-free region. The numerical result shows that the seed vortex becomes unstable, especially near the cylindrical side wall, and develops into turbulent vortices. After that a vortex array appears in the central region, collecting the vortices from the surrounding tangle. PACS numbers: 67.40.Vs, 47.32.Cc, 47.37.+q.  相似文献   

13.
We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.  相似文献   

14.
Novel mechanical resonators based on micro-electro-mechanical systems (MEMS) technology were developed for the study of superfluid 4He. The MEMS device is composed of two parallel plates, the movable plate suspended by four serpentine springs above the substrate, forming a shear mechanical oscillator. A specific device with a 1.25 μm gap was tested in the superfluid phase of 4He. At temperatures below 400 mK the device exhibits nonlinear and hysteretic behavior when the excitation exceeds a threshold. The anomalies are reminiscent of quantum turbulence and vorticity effects observed in other mechanical oscillators such as tuning forks or vibrating grids.  相似文献   

15.
We have been studying the behaviour of commercial quartz tuning forks immersed in superfluid 4He and driven at resonance. For one of the forks we have observed hysteresis and switching between linear and non-linear damping regimes at temperatures below 10 mK. We associate linear damping with pure potential flow around the prongs of the fork, and non-linear damping with the production of vortex lines in a turbulent regime. At appropriate prong velocities, we have observed metastability of both the linear and the turbulent flow states, and a region of intermittency where the flow switched back and forth between each state. For the same fork, we have also observed anomalous behaviour in the linear regime, with large excursions in both damping, resonant frequency, and the tip velocity as a function of driving force.  相似文献   

16.
A vibrating wire viscometer has been constructed using superconducting wire of diameter 58 µm in the form of a semicircular loop of radius 1.4 cm fixed at both ends and oscillating in a direction perpendicular to the plane of the loop. The use of the viscometer to measure the viscosity of normal phase3He is described and the corrections that have been applied to the data to allow for the finiteQ of the resonance, a quasiparticle mean free path comparable to the wire diameter, and a viscous penetration depth comparable to the size of the channel containing the wire are discussed. The measured viscosities show small departures from the ηT 2=const law of Fermi liquid theory similar to those observed in some but not all previous measurements. The values of the viscosity at the superfluid transition temperature agree with those obtained in other measurements.  相似文献   

17.
We performed numerical simulation of quantum turbulence at 0 K generated from remnant vortices attached to an oscillating sphere. The remnant vortices are extended by the sphere motion and form a tangle with emitting vortex loops. As time passes, the length of vortices in a computational volume becomes statistically steady. We investigate in the statistical steady state the distribution of the length of vortex loops and anisotropy of their propagation direction caused by the sphere oscillation. The propagation direction of the emitted vortex loops is anisotropic along the oscillation direction of the sphere. The obtained results are consistent with results obtained in the experimental study using vibrating wires in superfluid 4He.  相似文献   

18.
A convenient method to create vortices in meta-stable vortex-free superflow of 3He-B is to irradiate with thermal neutrons. The vortices are then formed in a rapid non-equilibrium process with distinctive characteristics. Two competing explanations have been worked out about this process. One is the Kibble-Zurek mechanism of defect formation in a quench-cooled second order phase transition. The second builds on the instability of the moving front between superfluid and normal 3He, which is created by the heating from the neutron absorption event. The most detailed measurements with single-vortex resolution have been performed at temperatures close to Tc. In the first half of this report we summarize the two models and then show that the experimentally observed vortices originate from the Kibble-Zurek mechanism. In the second half we present new results from low temperatures. They also weakly support the Kibble-Zurek origin, but in addition display superfluid turbulence as a new phenomenon. Below 0.6 Tc the damping of vortex motion from the normal component is reduced sufficiently so that turbulent vortex dynamics become possible. Here a single absorbed neutron may transfer the sample from the meta-stable vertex-free to the equilibrium vortex state. The probability of a neutron to initiate a turbulent transition grows with increasing superflow velocity and decreasing temperature. PACS numbers: 47.32, 67.40, 67.57, 98.80.  相似文献   

19.
The experimental investigation of superfluid turbulence in 3He-B is generally not possible with the techniques which have been developed for 4He-II. We describe a new method by which a transient burst of turbulent vortex expansion can be generated in 3He-B. It is based on the injection of a few vortex loops into rotating vortex-free flow. The time-dependent evolution of the quantized vorticity is then monitored with NMR spectroscopy. Using these techniques the transition between regular (i.e. vortex number conserving) and turbulent vortex dynamics can be recorded at T ~ 0.6 Tc and a number of other characteristics of turbulence can be followed down to a temperature of T ? 0.4 Tc. PACS numbers: 47.37, 67.40, 67.57.  相似文献   

20.
The mean free path effects in superfluid He II was studied with a vibrating wire method in the temperature range from T down to 20 mK under the saturated vapour pressure. The transition from the hydrodynamic regime to the ballistic regime was clearly observed at around 0.7 K with a 47 µm diameter wire. In the hydrodynamic regime the usual Stokes' approximation was found to be insufficient to interpret the results. In the ballistic regime the results can be explained quantitatively with the kinetic theory of phonons. However, below about 0.15 K there appear non-linear effects such as the distortion of the resonance line shape and a hysteresis behavior, which become stronger with decreasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号