首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
国际上的MOX燃料技术目前已较为成熟,且已有在压水堆中运行的工程经验。本文对MOX燃料组件的中子学性能进行了分析,对其在我国现役M310堆芯应用的可行性进行了研究,得到了M310堆芯由全部使用UO2燃料组件向使用30%的MOX燃料组件过渡的堆芯燃料管理方案,并对使用MOX燃料组件的堆芯的部分中子学参数进行了初步分析。结果表明:使用30%的MOX燃料组件的堆芯可达到与全UO2堆芯相当的循环长度;堆芯反应性控制能力可满足要求;慢化剂温度系数、Doppler温度系数、Doppler功率系数、氙和钐的动态特性均趋向使堆芯运行更加安全和稳定。本文的研究结果可为MOX燃料在M310堆芯中应用的进一步研究提供参考。  相似文献   

2.
建立改进型快谱超临界水冷堆(SCFR-M)堆芯模型,探讨点火区燃料棒直径和增殖区水棒直径对堆芯转换比的影响,得到合理的燃料组件设计形式。设计并计算6种不同堆芯布置的反应堆增殖特性和空泡反应性,并分析燃料中235U和239Pu成分对堆芯转换比和空泡系数的影响,提高了转换比;研究燃料成分对堆芯转换比的影响。结果表明:减小氢原子数与重金属原子数之比(H/HM),增加堆芯增殖燃料组件数目并采用合理布置可满足堆芯负空泡反应系数,且可以提高堆芯转换比;降低燃料中Pu同位素质量分数可以使堆芯转换比大幅增加,同时使堆芯的空泡反应性系数负值更大;当点火燃料组件采用Pu同位素质量分数为20.8%的MOX燃料,增殖燃料组件采用0.2%富集度235U的贫铀燃料,6号设计方案可以使堆芯的初始转换比达到1.03128,且空泡反应性系数为负,初步达到超临界水冷快堆的增殖要求。进一步对堆芯的缓发中子有效份额、能谱、中子注量率、功率分布进行计算,分析研究增殖堆芯的物理特性。  相似文献   

3.
通过计算华龙一号(HPR1000)压水堆平均卸料燃耗得到乏燃料中钚(Pu)同位素的含量,以此成分比例来设计铀钚混合氧化物(MOX)燃料。采用离散型燃料组件设计,通过不同Pu含量的MOX燃料棒离散型布置来降低与UO2燃料组件间的功率梯度。采用程序MCNP和COSLATC模拟堆芯功率分布和热中子注量率分布,采用分区分层的低泄漏装料方案,降低不同燃料组件间的功率梯度,展平堆芯的功率分布。在不考虑可燃毒物的前提下,利用3种Pu含量的MOX组件将混合堆芯的功率峰因子控制在1.77左右,明显优于原堆芯的功率峰因子,为国产三代压水堆引入MOX燃料提供了具有参考价值的装料方案。   相似文献   

4.
环形元件超临界水冷堆CSR1000A初步概念设计   总被引:1,自引:1,他引:0  
在压水堆环形燃料元件基础上,提出了一种新型适用于超临界水冷堆(SCWR)的环形元件。该环形元件具有大几何尺寸、采用UO2颗粒燃料、内包壳表面涂隔热层等特点。利用163盒由61个改进型环形元件及组件盒构成的六角形燃料组件,设计了百万千瓦环形元件超临界水冷堆CSR1000A,并给出了卸料燃耗、冷却剂出口温度及最大燃料包壳温度等关键参数。  相似文献   

5.
《核动力工程》2015,(1):173-176
不同于一般采用氢化锆作固体慢化剂的反应堆,快谱超临界水冷堆工作在严酷的高温高压条件下,高氢平衡压以及停开堆造成的热冲击都会导致氢化锆中氢的大量损失,事故工况下甚至会引发氢的无控释放。本文通过分析对比多种材料的有效增殖系数、转换比、慢化剂温度反应性、燃料Doppler反应性、空泡反应性等参数的变化,发现氧化铍、碳化硅是中子学综合性能相对较好的"花"型快谱超临界水冷堆固体慢化剂材料,并且对燃料Doppler反应性系数影响不大。  相似文献   

6.
本文基于中子学角度对典型压水堆中的事故容错燃料UO2-BeO设计进行分析。选取西屋公司的2D燃料组件问题,使用组件计算程序ALPHA对不同体积分数BeO的燃料进行计算。临界及燃耗计算结果表明:在燃料中加入BeO,一方面由于中子吸收,导致反应性惩罚;另一方面由于BeO的慢化作用,导致反应性补偿,两个相反影响相互竞争共同决定UO2-BeO燃料带来的综合效应。由反应性匹配基准可知,适量增加235 U富集度对维持反应堆整个运行循环的反应性平衡十分必要,其中基准1相对于基准2和3需对燃料富集度进行较大调整才可满足寿期末得到的kinf与参考组件一致。由反应性扰动分析结果可知,当燃料中加入BeO后,燃料温度系数随BeO体积分数的变化基本保持恒定,慢化剂温度系数降低,空泡系数增高。  相似文献   

7.
超临界水冷堆(SCWR)因具有较高的热效率和较强的经济竞争性等优势引起许多国家和地区的广泛关注。MOX燃料即普通燃料UO_2与PuO_2的混合陶瓷燃料替换UO_2会给SCWR堆芯安全带来一定的不确定性。因而MOX燃料组件的反应性控制与普通燃料有较大差异。论文采用MCNP5软件对SCWR采用传统核燃料与MOX燃料组件的控制棒控制性能进行了分析和对比,结果表明:MOX燃料组件中子能谱硬化,控制棒中硼(B)的丰度越大,控制棒直径越大,其控制效果越理想。控制棒对径向功率峰抑制效果明显,而对轴向功率分布影响较小。计算结果对压水堆新型MOX燃料组件控制棒设计有一定参考意义。  相似文献   

8.
利用物理-热工水力耦合计算程序系统(MCATHAS)分析2种六角形双排超临界燃料组件,充分考虑了超临界水冷堆(SCWR)中冷却剂、慢化剂轴向温度、密度的剧烈变化和功率分布的相互影响。计算结果表明,双排六角形组件具有均匀慢化和充分慢化性能,文中提出的D6-1型组件在仅采用一种燃料成分、不添加可燃毒物的情形下,其径向功率峰值因子低于1.10。另外,研究表明,由于组件间隙具有较大热周和较小流通面积,需要在实际工程应用中增加隔热涂层以降低组件外盒壁的导热率。  相似文献   

9.
《核动力工程》2016,(5):161-166
利用开发的超临界水堆(SCWR)堆芯稳态性能分析程序SNTA,研究分析中国百万千瓦级SCWR(CSR1000)优化堆芯燃耗性能、反应性控制能力、功率分布、最大燃料包壳温度和最大线功率密度等稳态性能,并给出与组件功率相匹配的第II流程冷却剂流量分配方案。研究表明,采用本文所述燃料组件及堆芯设计优化方法,可以有效延长堆芯燃耗寿期。  相似文献   

10.
针对超临界水堆的能谱特性及钍燃料的中子特性,提出了一种应用于超临界水堆的新型铀钍混合燃料组件设计方案,并利用组件计算程序Dragon"对该设计在不同工况下的中子学特性进行了分析,包括:无限增殖因数、反应性温度系数、易裂变材料存量比(FIR)等,以及它们随燃耗变化的规律。另外,通过改变混合燃料组件中燃料棒的慢化剂-燃料比,探究了其对燃料组件中子学特性的影响。结果表明:超临界水堆较硬的中子能谱有利于产生易裂变核素,同时该新型燃料组件在提高燃料利用率和减少次锕系元素存量方面具有一定的优势。  相似文献   

11.
Thorium can supplement the current limited reserves of uranium. In current study, analyses are performed for thorium based fuels in thermal neutron spectrum Super Critical Water Reactor (SCWR). Thorium based fuels are studied in two roles. First role being replacement of conventional uranium dioxide fuel while the other being burner of Reactor Grade Plutonium (RG-Pu) in thermal neutron spectrum SCWR. Coupled neutron physics/thermal hydraulics analyses are performed due to large density variation of coolant over the active fuel length. Analyses reveal that thorium-uranium MOX fuels lead to smaller burnup values as compared to equivalent enriched uranium dioxide but possess the advantage of smaller excess reactivity at Beginning of Life (BOL). This can lead to savings in the form of Burnable Poisons (BP). Smaller fuel average temperature values are obtained for thorium-uranium MOX fuels as compared to uranium dioxide fuel option. Coated fuel option utilizing mixed thorium-uranium mono nitride fuel can help further decrease fuel average temperature values for thorium based fuels. U-233, produced in thorium uranium fuels, contribution towards fission energy produced is smaller as compared to plutonium produced in conventional uranium dioxide fuel. In terms of proliferation resistance, approximately 40% less quantity of plutonium is produced for thorium-uranium MOX fuels (for studied compositions) as compared to equivalent enriched uranium dioxide fuel. But, there is not much difference between the discharged plutonium vector compositions. Thorium–Plutonium based fuels lead to significantly harder spectrum which results in larger spread in radial power density and eventually causes larger values for thermal hydraulic parameters like fuel and clad temperature. Due to almost no production of plutonium, thorium based fuels can be a very good option to burn RG-Pu in thermal spectrum SCWR. Thorium based fuels destroyed almost 74% initially loaded RG-Pu as compared to 60% for uranium based MOX. HEU based thorium fuels can be a very good option for replacing conventional uranium dioxide fuels as very small quantities of plutonium is produced. This option, although, has regulatory issues due to use of HEU material.  相似文献   

12.
在轻水堆中采用惰性基质燃料(IMF)能有效地从源头上降低乏燃料中次锕系核素(MA)的含量。为了研究IMF的燃耗特性,选取两种典型IMF方案PuO2+ZrO2+MgO和PuO2+ThO2,开展不同PuO2含量下IMF燃耗反应性计算,并与UO2燃料以及MOX燃料进行比较分析。结果表明:在总燃耗时间为1 095d情况下,两种IMF方案中PuO2体积分数为2%~10%时,其寿期末kinf均大于1,但PuO2+ZrO2+MgO方案的燃耗反应性波动大于PuO2+ThO2方案,PuO2+ThO2方案燃料寿期末MA的含量明显小于前者;在同一等效重金属质量分数下,MOX、UO2燃料寿期末MA的含量均大于两种IMF。  相似文献   

13.
Plutonium rock-like oxide(ROX) fuel burning in LWR has been studied. To improve reactivity insertion accident(RIA) behavior of zirconia(ZrO2) type ROX(Zr-ROX) fuel PWR, small negative Doppler reactivity coefficient of the fuel is increased with the additives such as 24mol% ThO2 or 15mol% UO2 in the fuel. There is also an approach of a heterogeneous core with 1/3 ROX and 2/3 UO2 fuels. From the loss of coolant accident(LOCA) analysis of Zr-ROX fuel PWR, the importance to decrease the large power peaking is shown. The ThO2 additive can make it easier to flatten the power distribution in the core, and improve not only the reactivity accident behavior but also the LOCA behavior. The power flattening can also be achieved by reducing the content of Gd2O3 mixed in ZrO2 and adding Er2O3 in place.

In the case of weapons-grade plutonium burning, the plutonium transmutation rate in Zr-ROX fuel LWR is about 0.9tonne/GWe/300 days, and far larger than that of full MOX LWR. The additives of ThO2 or UO2 decrease the plutonium transmutation rate, yet it is still larger than that in full MOX LWR by more than 2 times. Even in 1/3 Zr-ROX fuel core, the transmutation rate is comparable with the full MOX case. Total amount of discharged plutonium becomes less than 1/4 to 1/6 in these cores.  相似文献   


14.
对环形UO2燃料及环形MOX燃料组件参数的计算方法进行了研究。设计了包含193盒环形UO2和MOX燃料组件的混合型长周期(18个月)堆芯方案。对设计的堆芯的重要物理参数进行了分析,并对各循环进行了燃耗计算。结果表明,装载约30%MOX组件的堆芯可在百万千瓦功率下实现长周期换料。堆芯从初装载可安全过渡到平衡循环,各循环的重要物理参数均满足设计要求,说明设计的堆芯及燃料管理方案是安全可行的。  相似文献   

15.
With the aim of investigating the technical feasibility of fuelling a conventional BWR (Boiling Water Reactor) with thorium-based fuel, computer simulations were carried out in a 2D infinite lattice model using CASMO-5. Four different fissile components were each homogenously combined with thorium to form mixed oxide pellets: Uranium enriched to 20% U-235 (LEU), plutonium recovered from spent LWR fuel (RGPu), pure U-233 and a mixture of RGPu and uranium recovered from spent thorium-based fuel. Based on these fuel types, four BWR nuclear fuel assembly designs were formed, using a conventional assembly geometry (GE14-N). The fissile content was chosen to give a total energy release equivalent to that of a UOX fuel bundle reaching a discharge burnup of about 55 MWd/kgHM. The radial distribution of fissile material was optimized to achieve low bundle internal radial power peaking. Reactor physical parameters were computed, and the results were compared to those of reference LEU and MOX bundle designs. It was concluded that a viable thorium-based BWR nuclear fuel assembly design, based on any of the fissile components, can be achieved. Neutronic parameters that are essential for reactor safety, like reactivity coefficients and control rod worths, are in most cases similar to those of LEU and MOX fuel. This is also true for the decay heat produced in irradiated fuel. However when Th is mixed with U-233, the void coefficient (calculated in 2D) can be positive under some conditions. It was concluded that it is very difficult to make savings of natural uranium by mixing LEU (20% U-235) homogenously with thorium and that mixing RGPu with thorium leads to more efficient consumption of Pu compared to MOX fuel.  相似文献   

16.
Optimizing fuel cycle costs by increasing the final burnup leads to reduced generation of plutonium. Under properly defined boundary conditions thermal recycling in mixed oxide (MOX) fuel assemblies (FAs) reduces further the amount of plutonium which has to be disposed of in final storage. Increasing the final burnup requires higher initial enrichments of uranium fuel to be matched by an advanced design of MOX FAs with higher plutonium contents. The neutronic design of these MOX FAs has to consider the licensing status of nuclear power plants concerning the use of MOX fuel. The Siemens Nuclear Fuel Cycle Division, with more than 20 years' experience in the production of MOX fuel, has designed several advanced MOX FAs of different types (14 × 14 to 16 × 16) with fissile plutonium contents up to 4.60 w/o.  相似文献   

17.
Conceptual design of a Small-sized Reduced-Moderation Water Reactor (S-RMWR) core, which has the thermal output of 180 MW, the conversion ratio of 1.0 and the void reactivity coefficient of negative value, has been constructed. S-RMWR is a technology demonstration reactor which also conducts material and fuel testing for commercial use of Reduced-Moderation Water Reactor (RMWR) in large-scale power plants. It has a very tight triangular fuel rod lattice and a high coolant void fraction. The RMWR core axially has two short and flat uranium plutonium mixed oxide (MOX) regions with an internal blanket region in between, in order to avoid a positive void reactivity coefficient. The MOX regions are sandwiched between upper and lower blanket regions, in order to increase a conversion ratio.

In this small reactor core, leakage of neutrons is expected to be larger than in a large core. Therefore, a core design concept different from that for a large core is necessary. Core burnup calculations and nuclear and thermal-hydraulic coupled calculations were performed in the present study with SRAC and MOSRA codes. MVP code was also used to obtain control rod worth. Because of its large neutron leakage, keeping the void reactivity coefficient negative is easier for S-RMWR than RMWR. Thus, the heights of MOX region can be taller and the plutonium enrichment can be lower than in RMWR. On the other hand, to achieve the conversion ratio of 1.0, radial blanket and stainless steel reflector assemblies are necessary, whereas they are not needed for RMWR.  相似文献   

18.
大晶粒的UO2核芯可更有效地阻止反应堆运行时裂变气体的释放,实现反应堆燃耗的加深和延长反应堆燃料元件的运行寿命。采用溶胶凝胶工艺制备高温气冷堆燃料元件的UO2核芯,在胶液中加入含有Al的化合物Al(NO3)3•9H2O,以增大核芯晶粒尺寸。研究了添加剂对核芯晶粒尺寸的影响及烧结过程中分解的O离子与核芯U离子的扩散系数之间的关系。通过添加含有Al的化合物,UO2核芯的平均晶粒尺寸由18μm增加到30μm。对添加Al(NO3)3•9H2O的UO2核芯的烧结机理研究表明,UO2核芯晶粒的长大主要受空位扩散机制的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号