首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
高坝泄洪雾化模型试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
泄洪雾化是近20多年来水电工程中出现的一个新课题,现在的高坝具有落差大、泄洪流量大、河谷狭窄等特点,雾化问题突出,雾化水流的研究已成为高坝建设中新的水力学关键技术问题之一.为了正确预测高坝泄洪雾化雨强分布,根据二滩、安康、岩滩和小湾等工程的泄洪雾化物理模型试验和原型观测雾化资料,得出了用物理模型来研究高坝泄洪雾化的规律,并据此设计溪洛渡水电站泄洪雾化模型,试验得出溪洛渡水电站不同工况下的雾化雨强分布,为工程防护提供了科学依据.  相似文献   

2.
巨型电站高坝工程泄洪形成的泄洪雾化现象对水利枢纽的正常运行、交通安全、周围环境甚至下游岸坡稳定均可能造成危害。运行实践表明,大型水电工程的泄洪雾化,由于降雨强度及其影响范围相当大,与常规的自然降雨相比对水利枢纽附属建筑物和下游岸坡所造成的威胁、破坏要大得多,泄洪雾化作为环境问题受到了社会各方面的极大关注。通过大岗山水电站泄洪洞雾化原型观测,提出合理的安全调度运行方式,确保泄水建筑物运行的合理性、可靠性和安全性,为泄水建筑物的合理调度以及验证工程设计的正确性、合理性提供了依据。  相似文献   

3.
采用随机溅水数学模型,针对两河口水电站泄洪雾化降雨进行了数值模拟,分析了泄洪条件与河谷地形对雾化降雨分布的影响。研究表明,当洞式溢洪道与深孔泄洪洞联合运行时,泄洪雾化降雨区位于溢洪道出口下游约1 000~1 300 m,横向宽度可达300~400 m,雾雨爬升高度可达125~155 m,水舌下游暴雨区中心雨强约600~1 000 mm/h。洞式溢洪道采用窄缝出口并且正对河槽,雾化雨区主要在纵向扩展,而横向范围较为稳定。深孔泄洪洞采用横向扩散挑坎并与河道呈较大夹角,雾化雨区分布随泄洪流量变化较大,且雾雨区主要位于对岸岸坡。因此,在联合泄洪条件下,应通过增大溢洪道流量比例以控制泄洪洞下游对岸岸坡的雾雨爬升高度。  相似文献   

4.
瀑布沟水电站泄洪流量大、泄洪水头高,泄洪雾化冲刷严重,下游河道及泄洪雾化区防护治理复杂。为防止泄洪消能区河道岸坡淘刷和强雨雾破坏,确保河道岸坡安全稳定,文中对泄洪洞出口消能区河道岸坡防护设计标准、研究思路和实施措施,进行了介绍。  相似文献   

5.
瀑布沟水电站泄洪流量大、泄洪水头高,泄洪雾化冲刷严重,下游河道及泄洪雾化区防护治理复杂。为防止泄洪消能区河道岸坡淘刷和强雨雾破坏,确保河道岸坡及上部建筑物的安全稳定,本文对泄洪洞出口消能区河道岸坡防护设计标准、研究思路、防护范围、实施措施及运行情况进行了介绍。  相似文献   

6.
鲁布革电站泄水建筑物雾化原型观测   总被引:1,自引:0,他引:1  
鲁布革电站各泄水建筑物具有落差大、流速高、水流条件复杂的特点,水库库容小,汛期泄洪建筑物均需泄洪。通过观测确定了雾化降雨的范围、降雨强度及危害程度,证实了一定流量下泄洪引起的雾化降雨对两岸交通公路、岸坡及山体边坡的稳定无影响。  相似文献   

7.
溪洛渡水电站具有“窄河谷、大泄量、高水头”的特点,泄洪总功率达1亿kW,坝身采用水舌空中碰撞及水垫塘消能,泄洪雾化严重。本文借助大比尺物理模型预报泄洪水舌与泄洪雾化雨强分布;通过对国内近几十年来泄洪雾化模型试验及理论数值分析估算雾雨的影响范围,结合类似工程的原型观测资料,对溪洛渡的雾化问题给予综合评判,预测泄洪雾化范围及需采取的防护措施。  相似文献   

8.
为了预测峡口塘水电站泄洪雾化的影响范围,建立了相应的数值计算模型,利用江垭水电站泄洪雾化的原型观测资料对数值模型进行验证,计算结果与原观资料基本一致,表明该数值模型是合理的。利用验证的计算模型对峡口塘水电站5种不同工况下泄洪雾化进行预测,计算结果表明无风以及纵向风速15 m/s条件下,各级工况右岸电厂以及下游交通桥均位于毛毛雨区(10 mm/h~0.5 mm/h)外,未受到雾化降雨的影响,而坝下200 m范围内左右两岸边坡均处于暴雨区,受雾化降雨影响较大。  相似文献   

9.
1工程概述 溪洛渡水电站是金沙江下游规划开发的第3个梯级电站,也是金沙江上最大的一座水电站,位于青藏高原、云贵高原向四川盆地的过渡带,地处四川省雷波县与云南永善县接壤的溪洛渡峡谷段.溪洛渡水电站主要由拦河大坝、引水发电建筑物、泄水消能建筑物组成,坝高278.0 m,总装机容量13 860 MW.具有泄洪水头高、泄洪量大的工程特点,泄洪功率近100 000 MW,为世界拱坝枢纽之最.电站枢纽位于深山峡谷区,岸坡陡峭、河床狭窄,泄洪消能难度大.泄洪建筑物采用"分散泄洪、分区消能"的原则,利用在坝身布设7个表孔、8个深孔和左右岸各布设的2条泄洪洞共同泄洪.  相似文献   

10.
宝珠寺水电站雾化原型观测结果表明:右底孔单独泄洪时,水舌溅水很大部分落在左岸,最大降雨强度约为360mm/h,左、右底孔同时泄洪时,左岸最大雨强在1950mm/h以上;在常遇洪水下,左、右底孔同时泄洪时,泄洪雾化将造成防雾廊道右侧的498·7m平台的严重冲刷,对该部位必须用混凝土衬砌保护;宝珠寺坝顶及坝后开关站一般不会受到泄洪雾化的影响,水电站下游河谷开阔,泄洪水雾飘散范围宽,容易散开。不过,电厂出线距离泄洪雾化影响区很近,如果泄洪时间较长,则泄洪雾化可能会对输电安全造成影响。  相似文献   

11.
针对丰满水电站重建工程中的挑流消能方案,采用随机溅水数学模型,进行了泄洪雾化降雨数值模拟,将水舌入水喷溅源进行空间离散,描述水舌入水形态对下游雾化降雨的影响,同时考虑飞行水滴与空气间的相对速度,分析了各种泄洪运行方式与自然风场对雾化降雨分布的影响。研究表明:丰满水电站重建工程采用的分区挑流泄洪方案可将雾化区域控制在河道水面范围内,雾化降雨对左岸三期电站、右侧坝后电站、以及右岸生产、生活区的影响有限。在10 m/s以上横向风场作用下,左岸三期电站尾水平台出现5 mm/h左右的降雨,对此可通过增设地面排水设施加以解决。对于泄洪运行调度,建议优先开启中区4~#—6~#溢流表孔,然后是右区7~#—9~#溢流表孔,最后是左区1~#—3~#表孔,这可进一步减轻雾化对两岸建筑物及边坡稳定产生的不利影响。  相似文献   

12.
水利工程大功率泄洪引发的强降雨及雾流对工程运行安全和周围生态环境均可能产生较大影响。以往研究工作主要从工程安全出发,关注大坝下游两岸岸坡的泄洪雾化影响范围和雨强分布特性。由于泄洪雾化涉及复杂的水气两相流和高速水流运动问题,现阶段对雾化形成机理的研究尚不透彻。通过概化模型试验,利用高速摄影等测量手段,对不同水力条件下挑流水舌落水产生泄洪雾化的过程进行了观测分析,重点研究了落水点附近表面水体激溅反弹产生雾化源的过程,分析了泄洪雾化主要雾化源的组成和特点。研究表明泄洪雾化主要由水舌空中紊动掺气形成的抛洒雾源和水舌与下游水体碰撞反弹形成的激溅雾源组成,特别指出激溅雾源的形成与水舌入水导致的下游水体表面周期性壅水形成、破裂、消落的过程密切相关。  相似文献   

13.
玛尔挡水电站泄洪雾化数学模型研究   总被引:1,自引:0,他引:1  
玛尔挡水电站地处高山峡谷地区、两岸岩体地质情况较差,挑流泄洪雾化可能对两岸边坡及交通安全产生不利影响。为准确预测泄洪雾化水流的影响范围和程度,结合蒙特卡罗方法考虑环境风和地形因素的随机喷溅数学模型,对玛尔挡水电站在水舌风和汛期最不利自然风两种情况下3个典型工况的雾化情况进行了计算和分析。研究结果表明:泄洪雾雨主要沿边坡竖向爬升,只考虑水舌风时,下游雾化降雨范围最远到达坝下1 021 m,横向左扩散至3 190 m高程,横向右扩散至3 160 m高程。水舌风和自然风共同作用时,各泄洪组次雾化范围沿自然风向偏移,左右岸影响范围收窄。根据暴雨分布范围,建议适当增加下游两岸边坡的防护长度和高程。雾化降雨对省道S101没有影响,但左岸导流洞出口导墙段区域和右岸进厂交通洞口位于薄雾降雨区,泄洪时应禁止通行。  相似文献   

14.
张华  宋佳星  何贵成  彭燕祥 《水利学报》2019,50(10):1222-1230
为实现在综合考虑地形和环境背景场条件下,模拟泄洪期间局地区域天气环境的变化情况,以数值天气预报系统为基础,建立了泄洪雾化对天气环境影响的松弛同化方法。结合大岗山水电站一次降雨过程和实际观测资料,拟定了泄洪雾化同化数据分类设置的参考值范围。运用泄洪雾化对天气环境影响的松弛同化方法,对大岗山水电站泄洪期间的天气环境变量进行了同化计算。由于大岗山水电站仅有2015年9月14日15∶30—16∶40泄洪数据,选取2015年9月14日16∶00时刻模拟数据分析得到,在考虑风向变化的条件下,风速变化值为8.76 m/s,纵向影响范围约2.1 km;温度降低了3.32℃,纵向影响范围约2 km;相对湿度升高了8.71%,纵向影响范围约2.8 km。模拟结果表明,风速受水舌风影响风向改变、风速升高,温度受泄洪雾化降雨影响降低,相对湿度受雨雾蒸发影响升高。同化模拟的结果均向观测数据趋近,模拟结果符合实际的观测情况。  相似文献   

15.
针对高坝工程泄洪调度方式的雾化影响问题,提出一种改进的泄洪雾化数学模型。该模型可综合反映水舌入水条件、气象条件及河谷地形的影响,并通过小湾工程实测资料验证,两者吻合良好。在此基础上,针对白鹤滩水电站坝身泄洪方式进行雾化影响对比分析。结果表明,当深孔泄洪时,由于其水舌挑距大,入水角度小,水舌风场与雾化降雨范围明显大于表孔泄洪,在泄洪流量与水位落差相同的条件下,表、深孔不同开启方式,其水舌落点与入水形态各不相同,最终引起水舌风场与雾化降雨分布显著变化,根据不同运行工况下的雾化降雨对比结果,提出了坝身孔口的最优开启方式。上述研究为今后实际工程泄洪调度的雾化影响分析提供了借鉴。  相似文献   

16.
杨房沟水电站坝址河谷狭窄,洪峰流量大,枢纽最大泄洪功率为10 960 MW,在国内拱坝中处于较高水平.水电站泄洪消能采用“坝身表、中孔泄洪+坝下水垫塘”布置型式.文中通过方案比较,泄洪建筑物采用3个表孔和4个中孔的坝身集中泄洪方案,下游消能建筑物采用水垫塘+二道坝方案.表孔出口采用收缩型式、中孔出口采用收缩型式的宽尾墩.结合泄洪雾化分析,对水垫塘两岸边坡采用混凝土护坡、喷锚支护和排水孔等措施.  相似文献   

17.
挑流泄洪雾化影响范围的人工神经网络模型预测   总被引:6,自引:0,他引:6  
在泄洪雾化机理研究的基础上,以BP神经网络为基础,研究建立了挑流泄洪雾化神经网络模型,并用网络模型预测出拉西瓦水电站不同水位和宣泄洪量下的雾化影响范围,泄洪雾化是宣泄洪量、水位差、泄洪孔口形式等多因素相互作用的结果,具有明显的非线性输入、输出关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号