首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Steroid hormones, such as progesterone, oestrogen, androgen and meiosis activating sterols, are secreted from cumulus cells that are stimulated by gonadotrophins during maturation of oocytes in vitro. These steroid hormones may be absorbed by mineral oil or paraffin oil; however, in vitro maturation of pig oocytes is commonly performed using medium covered by oil. In this study, high concentrations of progesterone, oestradiol and testosterone were detected in the culture medium after pig cumulus-oocyte complexes (COCs) were cultured with FSH and LH for 44 h in medium without an oil overlay. However, high concentrations of these steroid hormones were not detected in medium when COCs were cultured with the mineral oil overlay. When high concentrations of these steroid hormones were secreted by COCs, germinal vesicle breakdown (GVBD) and the activation of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase in oocytes occurred earlier in comparison with oocytes cultured in medium covered with mineral oil. Moreover, a decrease in p34(cdc2) kinase activity during meiotic progression beyond metaphase I was observed in oocytes cultured in conditions under which high concentrations of steroid hormones were secreted by COCs. In addition, the rate of development to the blastocyst stage after IVF was higher in oocytes matured in medium without an oil overlay. These adverse effects of oil may be explained by absorption by the oil of cumulus-secreted steroids or by the release of toxic compounds into the medium.  相似文献   

2.
The objective of this study was to investigate the role of calmodulin-dependent protein kinase II (CaMKII) during fertilization in the pig. Since it has been reported that CaMKII is involved in the capacitation and acrosome reaction of spermatozoa, we tested whether supplementation with the CaMKII inhibitor, KN-93, in the fertilization medium affected sperm penetration. The results showed that the addition of KN-93 in the fertilization medium significantly reduced the rate of sperm penetration into oocytes. However, pre-treatment with KN-93 before in vitro fertilization (i.v.f.) did not significantly affect sperm penetration, but it did affect pronuclear formation in a dose-dependent manner. In the oocytes pre-treated with KN-93 before i.v.f. and then co-cultured with spermatozoa without the drug, the decrease in p34cdc2 kinase and the cyclin B1 level were significantly suppressed as compared with those in penetrated oocytes without treatment with KN-93. However, the decrease in MAP kinase activity was not affected by KN-93. Additional treatment with KN-93 after Ca2+ ionophore treatment also inhibited the reduction in p34cdc2 kinase activity and the cyclin B1 level, but not MAP kinase activity. Treatment with KN-92, an inactive KN-93 analogue, did not significantly affect sperm penetration and pronuclear formation. In conclusion, the activation of CaMKII by artificial stimuli or sperm stimulated the disruption of cyclin B1 and the inactivation of p34cdc2 kinase, but did not affect MAP kinase inactivation during oocyte activation in pigs.  相似文献   

3.
The overall objective was to evaluate the effectiveness of the S-enantiomer of roscovitine (inhibitor of p34cdc2/cyclin B kinase) to maintain bovine cumulus-oocyte complexes at the germinal vesicle (GV) stage for extended times after removal from antral follicles without compromising subsequent maturation, fertilization and embryo development. Oocytes were cultured in 0, 12.5, 25 or 50 micromol/l S-roscovitine for 24 h. Hoechst staining showed that 50 micromol/l S-roscovitine maintained >90% of oocytes at the GV stage and inhibited gonadotropin-induced cumulus expansion. Fewer oocytes underwent nuclear maturation after in vitro maturation (Hoechst staining) when cultured in 50 micromol/l S-roscovitine for 66 versus 21 or 42 h. Zona pellucida (ZP) hardening (pronase resistance), cortical granule types (lens culinaris agglutinin-fluorescein isothiocyanate), nuclear maturation and fertilization with frozen-thawed spermatozoa (Hoechst staining) were assessed after culture of oocytes in 50 micromol/l S-roscovitine for 0, 24 or 48 h. Neither ZP hardening, nor nuclear maturation nor fertilization were altered by roscovitine culture for 48 h. A higher proportion of oocytes had a type III cortical granule pattern (premature translocation to the oolemma) after roscovitine culture for 48 h. However, embryo development was not compromised as cleavage, development to 8-16 cell and blastocyst stages were at least comparable in control and roscovitine-treated oocytes. In conclusion, the studies have shown that S-roscovitine reversibly maintained bovine oocytes at the GV stage for 48 h. However, maintenance of oocytes in static culture for 48 h was not sufficient to improve development above non-treated controls.  相似文献   

4.
When the nucleus in G0/G1 phase is transferred to an enucleated oocyte by nuclear transfer (NT), its nuclear envelope is broken, followed by condensation of chromosome structure by maturation promoting factor (MPF). This morphological remodeling of the transferred interphase nucleus seems to be essential for subsequent development of NT embryos. In this study, we treated porcine NT embryos with caffeine, which has been reported to increase MPF activity, to keep their MPF level high during NT. When 2.5 mM caffeine was added to the handling medium, the proportion of NT embryos showing condensed chromosome increased significantly (P < 0.05). In NT embryos treated with caffeine, the activity of p34(cdc2) kinase was significantly (P < 0.05) higher than in those without caffeine at 3 h post-injection. In addition, the rate of development to the blastocyst stage after activation was significantly (P < 0.05) higher in NT embryos treated with caffeine. These results indicate that caffeine treatment can increase not only the rate of chromosome condensation but also the developmental rate to the blastocyst stage of porcine NT embryos. This action is most likely due to the support/increase of MPF activity throughout the process of NT.  相似文献   

5.
The present study was undertaken to explore the regulatory mechanisms for meiotic resumption of pig cumulus-oocyte complexes (COCs) by assessing the nuclear status of oocytes, the degree of gap junction cell-to-cell communication and cumulus expansion after culture of various numbers of COCs in 10 microl droplets of medium for 24 h. Gap junction communication was examined by confocal laser scanning microscopy after injection of a fluorescent dye, lucifer yellow, into the oocytes. When one, three or six COCs were cultured in a 10 microl droplet, germinal vesicle breakdown was observed in > 70% of oocytes; increasing the number of COCs in a droplet further actually decreased the proportion of oocytes undergoing germinal vesicle breakdown (10 COCs: 49%; 20 COCs: 21%; 40 COCs: 13%). When six COCs were cultured in a 10 microl droplet of conditioned medium (prepared previously by culturing 20 intact and oocytectomized COCs for 24 h), the proportion of oocytes undergoing germinal vesicle breakdown was significantly reduced compared with the proportion in fresh medium. An increase in the proportion of category 1 COCs (all gap junctions within cumulus cells and between cumulus cells and oocyte are functionally maintained) was achieved by increasing the number of COCs cultured in a 10 microl droplet. The addition of conditioned medium to the fresh medium at a concentration of 50% significantly inhibited cumulus expansion. From these results, it is concluded that the factors secreted by cumulus cells regulate the disruption of gap junctions and cumulus expansion, and concurrently control the incidence of germinal vesicle breakdown in pig COCs.  相似文献   

6.
The objectives of this study were to evaluate: (1) the nuclear maturation, (2) the intracellular glutathione (GSH) content, (3) the normality of fertilization and (4) full development after transplantation of embryos derived from porcine oocytes pre-cultured with 50 micromol/l roscovitine (an inhibitor of p34cdc2/cyclin B kinase) for 22 h. After treatment with roscovitine, the nuclear configuration of oocytes (Hoechst staining) was comparable with those examined just after collection: the majority of oocytes were arrested at the germinal vesicle (GV) 1 stage (63.2%). Roscovitine-treated oocytes progressed through meiosis to the metaphase II stage in a conventional step-wise in vitro maturation (IVM) program for 44 h in a proportion similar to control ones (>85.0%). When roscovitine-treated oocytes and non-treated oocytes were matured for 44 h and then co-cultured with fresh spermatozoa for 18 h, no differences were observed in oocyte penetrability, proportion of monospermic penetration and male pronuclear formation (>87%). Roscovitine increased the GSH synthesis in oocytes at 22 h, whereas, after 44 h, roscovitine-treated oocytes had similar amounts of GSH to non-treated oocytes. Finally, surgical transfer of zygotes at 22-24 h post-insemination, derived from roscovitine-treated oocytes, resulted in one pregnancy with 12 piglets born; control non-treated zygotes resulted in one pregnancy and 10 piglets born. The full-term developmental ability of mammalian oocytes pre-cultured with roscovitine prior to IVM is thereby demonstrated. This validation is important before the introduction of roscovitine into routine procedures.  相似文献   

7.
In oocytes from all mammalian species studied to date, fertilization by a spermatozoon induces intracellular calcium ([Ca(2+)](i)) oscillations that are crucial for appropriate oocyte activation and embryonic development. Such patterns are species-specific and have not yet been elucidated in horses; it is also not known whether equine oocytes respond with transient [Ca(2+)](i) oscillations when fertilized or treated with parthenogenetic agents. Therefore, the aims of this study were: (i) to characterize the activity of equine sperm extracts microinjected into mouse oocytes; (ii) to ascertain in horse oocytes the [Ca(2+)](i)-releasing activity and activating capacity of equine sperm extracts corresponding to the activity present in a single stallion spermatozoon; and (iii) to determine whether equine oocytes respond with [Ca(2+)](i) transients and activation when fertilized using the intracytoplasmic sperm injection (ICSI) procedure. The results of this study indicate that equine sperm extracts are able to induce [Ca(2+)](i) oscillations, activation and embryo development in mouse oocytes. Furthermore, in horse oocytes, injection of sperm extracts induced persistent [Ca(2+)](i) oscillations that lasted for >60 min and initiated oocyte activation. Nevertheless, injection of a single stallion spermatozoon did not consistently initiate [Ca(2+)](i) oscillations in horse oocytes. It is concluded that stallion sperm extracts can efficiently induce [Ca(2+)](i) responses and parthenogenesis in horse oocytes, and can be used to elucidate the signalling mechanism of fertilization in horses. Conversely, the inconsistent [Ca(2+)](i) responses obtained with sperm injection in horse oocytes may explain, at least in part, the low developmental success obtained using ICSI in large animal species.  相似文献   

8.
One of the defining characteristics of the catalytic subunit of the cyclin-dependent protein kinases (cdks) is the so-called PSTAIRE motif. Western blots of fission yeast cytosolic extracts using a monoclonal antibody against the PSTAIRE peptide revealed two bands at 34 kDa (p34cdc2) and 31 kDa (p31). Polyclonal antibodies to the C-terminus of p34cdc2 or to the full-length protein recognized the 34 kDa band but not p31. Overexpression of the cdc2+ gene resulted in the increase of the 34 kDa band but not p31. Like p34 the level of p31 revealed no obvious cell cycle regulation but the protein was present in spores where p34cdc2 was barely detectable. p31 expression was unaffected by removal of either phosphate or ammonium from the growth medium, although the level of p34cdc2 was reduced in the absence of phosphate. p31 was not associated with cyclin B, nor was it adsorbed to p13suc1 Sepharose beads, two characteristics of p34cdc2. p31 did, however, interact with p15, the starfish homologue of p13suc1. p31 was present in cells in which cdc2+ was replaced by its budding yeast homologue CDC28. When fission yeast cytosolic extracts were subjected to gel filtration chromatography, p31 eluted in two peaks, one at approximately 100 kDa, the other at approximately 30 kDa. We conclude that p31 is a novel fission yeast PSTAIRE protein and therefore, potentially, a new cdk. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Resumption of meiosis in oocytes represents the entry into M-phase of the cell cycle and is regulated by the maturation-promoting factor (MPF). Activation of MPF is catalyzed by the dual specificity phosphatase, cdc25. In mammals, cdc25 is represented by a multigene family consisting of three isoforms: A, B and C. A recent report that female mice lacking cdc25B exhibit impaired fertility suggests a role for this isoform in regulating the G2- to M-transition in mammalian oocytes. Supporting the above-mentioned observation, we demonstrate herein that microinjection of neutralizing antibodies against cdc25B interfered with the ability of rat oocytes to undergo germinal vesicle breakdown (GVB). We also show accumulation of cdc25B in GVB oocytes and a transient reduction in its amount at metaphase I of meiosis. The accumulation of cdc25B was associated with its mRNA cytoplasmatic polyadenylation and was prevented by the protein synthesis inhibitor cyclohexamide as well as by the polyadenylation inhibitor cordycepin. Immunofluorescence staining revealed translocation of cdc25B to the metaphase II spindle apparatus. Taken together, our findings provide evidence that cdc25B is involved in resumption of meiosis in rat oocytes. We further demonstrate for the first time, a periodic accumulation of cdc25B throughout meiosis that is translationally regulated and involves cdc25B mRNA polyadenylation.  相似文献   

10.
During fertilization of mammalian eggs a factor from the sperm, the sperm factor (SF), is released into the ooplasm and induces persistent [Ca(2+)](i) oscillations that are required for egg activation and embryo development. A sperm-specific phospholipase C (PLC), PLCz, is thought to be the SF. Here, we investigated whether the SF activity and PLCzetaare simultaneously and completely released into the ooplasm soon after sperm entry. To accomplish this, we enucleated sperm heads within 90 min of intracytoplasmic sperm injection (ICSI) and monitored the persistence of the [Ca(2+)](i) oscillations in eggs in which the sperm had been withdrawn. We also stained the enucleated sperm heads to ascertain the presence/absence of PLCzeta. Our results show that by 90 min all the SF activity had been released from the sperm, as fertilized enucleated eggs oscillated as fertilized controls, even in cases in which oscillations were prolonged by arresting eggs at metaphase. In addition, we found that the released SF activity became associated with the pronucleus (PN), as induction of PN envelope breakdown evoked comparable [Ca(2+)](i) responses in enucleated and non-manipulated zygotes. Lastly, we found that PLCzlocalized to the equatorial area of bull sperm and to the post-acrosomal region of mouse sperm and that by 90 min after ICSI all the sperm's PLCzetaimmunoreactivity was lost in both species. Altogether, our findings show that during fertilization the SF activity and PLCzetaimmunoreactivity are simultaneously released from the sperm, suggesting that PLCzetamay be the only [Ca(2+)](i) oscillation-inducing factor of mammalian sperm.  相似文献   

11.
This study was undertaken to evaluate the development of equine oocytes in vitro and in vivo after intracytoplasmic sperm injection (ICSI) with either fresh or frozen-thawed spermatozoa, without the use of additional activation treatments. Oocytes were collected from ovaries obtained from an abattoir and oocytes classified as having expanded cumulus cells were matured in M199 with 10% fetal bovine serum and 5 microU FSH ml(-1). After 24-26 h of in vitro maturation, oocytes with a first polar body were selected for manipulation. Fresh ejaculated stallion spermatozoa were used for the experiment after swim-up for 20 min in sperm-Tyrode's albumen lactate pyruvate. Frozen-thawed spermatozoa from the same stallion were treated in a similar way. Spermatozoa were immobilized and injected into the oocytes using a Piezo drill. Presumptive zygotes were cultured in G1.2 medium for 20 or 96 h after the injection was administered, or were transferred to the oviducts of recipient mares and recovered 96 h later. In addition, bovine oocytes with first polar bodies were injected with the two types of stallion spermatozoa and fixed 20 h after injection to examine pronuclear formation. Fertilization rate (pronucleus formation and cleavage) at 20 h after injection of spermatozoa was not significantly different between fresh and frozen-thawed sperm groups in either equine or bovine oocytes. Pronucleus formation after injection of spermatozoa into bovine oocytes was significantly higher than that for equine oocytes (P < 0.05). There were no significant differences in cleavage rate or average number of nuclei at 96 h between equine oocytes injected with fresh or frozen-thawed spermatozoa. However, embryos developed in vivo for 96 h had a significantly higher number of nuclei in both sperm treatments compared with those cultured in vitro. These results indicate that good activation rates may be obtained after injection of either fresh or frozen-thawed equine spermatozoa without additional activation treatment. Injection of frozen-thawed equine spermatozoa results in similar embryo development to that obtained with fresh equine spermatozoa. In vitro culture of equine zygotes in G1.2 medium results in a similar cleavage rate but reduced number of cells compared with in vivo culture within the oviduct. Bovine oocytes may be useful as models for assessing sperm function in horses.  相似文献   

12.
Oocyte cryopreservation is a potentially valuable way of preserving the female germ line. However, the developmental competence of cryopreserved oocytes is presently poor. This study investigated whether the morphology of the cumulus complex surrounding an immature equine oocyte and/or the oocyte's stage of maturation affect its cryopreservability. Compact (Cp) and expanded (Ex) cumulus oocyte complexes (COCs) were vitrified either shortly after recovery (germinal vesicle stage, GV) or after maturation in vitro (IVM); cryoprotectant-treated and -untreated non-frozen oocytes served as controls. In Experiment I, oocytes matured in vitro and then vitrified, or vice versa, were examined for maturation stage and meiotic spindle quality. Cp and Ex COCs vitrified at the GV stage matured at similar rates during subsequent IVM (41 vs 46% MII), but meiotic spindle quality was better for Cp than Ex (63 vs 33% normal spindles). Vitrifying oocytes after IVM resulted in disappointing post-warming spindle quality (32 vs 28% normal for Cp vs Ex). In Experiment II, oocytes from Cp and Ex COCs vitrified at the GV or MII stages were fertilized by intracytoplasmic sperm injection (ICSI) and monitored for cleavage and blastocyst formation. Oocytes vitrified prior to IVM yielded higher cleavage rates (34 and 27% for Cp and Ex COCs) than those vitrified after IVM (16 and 4%). However, only one blastocyst was produced from a sperm-injected vitrified-warmed oocyte (0.4 vs 9.3% and 13% blastocysts for cryoprotectant-exposed and -untreated controls). It is concluded that, when vitrification is the chosen method of cryopreservation, Cp equine COCs at the GV stage offer the best chance of an MII oocyte with a normal spindle and the potential for fertilization; however, developmental competence is still reduced dramatically.  相似文献   

13.
Few studies demonstrate at a biochemical level the metabolic profile of both cumulus cells and the oocyte during maturation. The aim of the present study was to investigate the differential participation of enzymatic activity in cumulus cells and in the oocyte during in vitro maturation (IVM) by studying the activity of enzymes involved in the control of amino acid metabolism, alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and the tricarboxylic acid (TCA) cycle, isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH). No NAD-dependent isocitrate dehydrogenase (NAD-IDH) activity was recorded in cumulus-oocyte complexes (COCs). ALT, AST, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and MDH enzymatic units remained constant in cumulus cells and oocytes during IVM. Specific activities increased in oocytes and decreased in cumulus cells as a result of IVM (P<0.05). Similar activity of both transaminases was detected in cumulus cells, unlike in the oocyte, in which activity of AST was 4.4 times greater than that of ALT (P<0.05). High NADP-IDH and MDH activity was detected in the oocyte. Addition of alanine, aspartate, isocitrate + NADP, oxaloacetate or malate + NAD to maturation media increased the percentage of denuded oocytes reaching maturation (P<0.05), in contrast to COCs in which differences were not observed by addition of these substrates and co-enzymes. The activity of studied enzymes and the use of oxidative substrates denotes a major participation of transaminations and the TCA cycle in the process of gamete maturation. The oocyte thus seems versatile in the use of several oxidative substrates depending on the redox state.  相似文献   

14.
The response of Graafian follicles to pre-ovulatory surge levels of FSH and LH in vivo triggers the terminal differentiation of granulosa cells and oocyte maturation. In polyovular species, the LH-driven signalling uses the epidermal growth factor (EGF)-like ligands AREG, EREG and BTC to promote oocyte maturation and cumulus expansion. This experimental series used a physiologically relevant ovine in vitro maturation (IVM) system to evaluate the impact of exposure to pre-ovulatory levels (100 ng/ml) of LH and FSH on ovine cumulus cell expression of EGF-like ligands in vitro. The serum-free sheep IVM system supported high levels (91.4%) of gonadotrophin-induced maturation of cumulus-enclosed oocytes and embryo development to the blastocyst stage (34.5%). Results were equivalent to a serum-based IVM system (85.1% IVM, 25.8% blastocyst rate; P>0.05) but were significantly different (P<0.05) to serum-free medium without gonadotrophins (69.5% IVM; 8.0% blastocyst rate). Ovine BTC was cloned and sequenced. Gonadotrophin-induced AREG, EREG, BTC and EGFR expressions were quantified in cumulus and mural granulosa cells during IVM. A rapid induction of AREG expression was apparent in both cell types within 30 min of gonadotrophin exposure in vitro. LHCGR (LHR) was detected in mural cells and FSHR in both cumulus and mural granulosa cells. The data confirm the involvement of AREG and EGFR during gonadotrophin-induced cumulus expansion, oocyte maturation and the acquisition of developmental competence by sheep oocytes matured in vitro.  相似文献   

15.
Fertilization affects levels of cyclin B1 and M-phase promoting factor (MPF) activity in maturing and metaphase II mouse oocytes in two distinct ways. In metaphase II oocytes, it leads to a Ca(2)(+)-dependent, continuous degradation of cyclin B1 and inactivation of cyclin dependent kinase (CDC2A)-cyclin B1 complex (MPF). In this paper, we show that neither mono- nor polyspermic fertilization of prometaphase I and metaphase I oocytes triggered degradation of cyclin B1. However, polyspermic fertilization of prometaphase I oocytes led to a transient decrease in MPF activity that lasted for 2 h. The inactivation of MPF in polyspermic prometaphase I oocytes did not depend on the fertilization-induced increase in the cytoplasmic concentration of free Ca(2)(+) ions, but was caused, at least in part, by dephosphorylation of CDC2A at threonine 161 (Thr161). We found that polyspermic fertilization did not affect glutathione levels in prometaphase I oocytes, and concluded that the decrease in MPF activity and dephosphorylation of CDC2A at Thr161 in polyspermic prometaphase I oocytes were not caused by a change in the redox status of the cell induced by an introduction of excessive amount of sperm protamines. Instead, we propose that inactivation of MPF activity in polyspermic maturing oocytes is caused by a change in nucleo-cytoplasmic ratio that leads to a 'titration' of kinases and phosphatases responsible for keeping MPF in an active state. This idea is supported by the finding that oocytes fused with thymocytes rather than spermatozoa also showed a transient decrease in MPF activity.  相似文献   

16.
Microbial contamination of table eggs has become an important public health problem. In this study, peroxidase-catalyzed compound (PCC), which is innocuous to humans, was tested for its bactericidal activity on a variety of bacteria on inert carriers and on egg shell surfaces. When inert carriers containing Salmonella choleraesuis, Staphylococcus aureus and Pseudomonas aeruginosa were exposed to PCC, population reductions were within acceptable performance standards for standard and simulated hard water conditions. When evaluated for sporicidal activity, PCC gave no positive carriers in a total of 60 carriers tested for either Bacillus subtilis or Clostridium sporogenes. Enterococcus faecalis and Pseudomonas fluorescens viable cells on egg shell surfaces were determined after dip treatment with deionized distilled water, PCC or chlorine-treated (200 ppm) water for 1, 3 and 5 min and compared with those of a control without dip treatment. All treatments significantly reduced the viable cells (log10 CFU/egg) compared to controls for both strains (p < 0.05). Populations of both strains surviving chlorine and PCC were significantly lower than surviving deionized-distilled water, although PCC gave higher recoveries than chlorine (p < 0.05). Populations exposed to PCC treatment were significantly decreased after 3 and 5 min, respectively (p < 0.05). The results of this study indicate that PCC has potential as a table egg sanitizer that could replace the other egg sanitizers which may be environmentally problematic. Based on the inert carrier studies, PCC may also be an effective disinfectant for egg processing equipment and plastic egg cartons in the presence of hard water or contaminating soil .  相似文献   

17.
Aroclor-1254 (A-1254) is a commercial mixture of coplanar (dioxin-like) and non-coplanar (non dioxin-like) polychlorinated biphenyls (PCBs) affecting bovine oocyte in vitro maturation (IVM) and developmental competence. In the present study, the role of cumulus cell apoptosis in mediating the toxic effects of PCBs during in vitro maturation has been investigated. Results indicate that exposure of cumulus-oocyte complexes (COCs) to A-1254 significantly induced apoptosis of cumulus cells. Furthermore, A-1254 significantly increased the expression of the pro-apoptotic gene, Bax, concomitantly reducing the level of the anti-apoptotic gene, Bcl-2, in the cumulus cell compartment. The effects of pure mixtures of coplanar (PCB 77, 126 and 169) or non-coplanar (PCB 52, 101 and 153) PCBs were examined. Exposure of COCs to coplanar PCBs affected maturation at doses as low as 100.6 pg/ml. Furthermore, a significant increase in apoptosis and in Bax mRNA expression was observed. No variations in maturation or apoptosis were observed in the non-coplanar PCB group. To further analyze the role of cumulus cells, COCs and denuded oocytes (DOs) have been exposed to A-1254 or coplanar PCBs during IVM. Exposure of COCs significantly reduced the percentage of matured oocytes after 24 h of culture in both treatments. In contrast, exposure of DOs significantly decreased the maturation rate only at the highest dose investigated (100-fold greater than that affecting COCs). Taken together, the results indicate a direct role of cumulus cell apoptosis in mediating PCB toxicity on bovine oocytes, and a direct relationship between congener planarity and toxicity in bovine oocytes is suggested.  相似文献   

18.
The ability of an oocyte to support early embryonic development requires both nuclear and cytoplasmic maturation. We have investigated the effects of brain-derived neurotrophic factor (BDNF) on maturation of the bovine oocyte and embryo development after parthenogenetic activation. By RT-PCR and immunohistochemistry, cumulus and oocytes were shown to express mRNA and protein for BDNF and the p75 common neurotrophin receptor. However, mRNA for the BDNF-specific full length and truncated isoforms of the TrkB receptor are only detected in cumulus, suggesting that oocytes and cumulus differ in their capacity to respond to neurotrophin signalling. In in vitro maturation experiments, the proportion of cumulus oocyte complexes maturing to metaphase II was not altered by BDNF in groups lacking fetal calf serum (FCS), but was significantly lower than the positive control containing 10% FCS (P < 0.01). However, after maturation, the proportion of parthenogenetically activated oocytes forming blastocysts was highest for 10 ng/ml BDNF (24%, n = 95) followed by 100 ng/ml BDNF (18%, n = 91) and 10% FCS (15%, n = 103), which in turn were greater than no serum (10%, n = 83; P < 0.01). Maturation in the presence of a BDNF blocking antibody resulted in a blastocyst yield that was comparable to the absence of serum, and lower than in the presence of BDNF (P < 0.01). Similar effects on progression to metaphase II and blastocyst formation were observed using oocytes matured without cumulus. Together, these results provide the first evidence for a role for neurotrophins in promoting oocyte cytoplasmic competence to support embryonic development, despite being insufficient in the absence of serum to enhance nuclear maturation.  相似文献   

19.
To improve in vitro maturation (IVM) of denuded oocytes (DOs), we observed the interactive effects of cysteamine, cystine and cumulus cells on the glutathione (L-gamma-glutamyl-L-cysteinyl-glycine; GSH) level and developmental capacity of goat IVM oocytes. Cysteamine supplementation increased the GSH level and blastocyst rates of both cumulus-oocyte complexes (COCs) and DOs, while the addition of cystine increased the GSH level and blastulation only in the presence of cumulus cells (COCs or DOs co-cultured on a cumulus cell monolayer). Simultaneous supplementation of cysteamine and cystine increased the GSH content and blastulation of co-cultured DOs to a level similar to that of COCs matured without thiol supplementation. Co-culture without thiol supplementation improved DOs' GSH synthesis but not blastulation. The results suggest that DOs cannot utilize cystine for GSH synthesis unless exogenous cysteamine is supplied by either cumulus cells or supplementation. Thus, while the addition of cystine alone is enough to improve IVM of COCs, improvement of DOs requires supplementation of both cystine and cysteamine. Synergic actions between cysteamine, cystine and cumulus cells restore the GSH level and developmental capacity of goat DOs.  相似文献   

20.
Mouse recipient cytoplasts for somatic cell nuclear transfer (SCNT) are routinely prepared by mechanical enucleation (ME), an invasive procedure that requires expensive equipment and considerable micromanipulation skills. Alternatively, oocytes can be enucleated using chemically assisted (AE) or chemically induced (IE) enucleation methods that are technically simple. In this study, we compared the reprogramming potential and developmental capacity of cloned embryos generated by ME, AE, and IE procedures and treated with the histone deacetylase inhibitor valproic acid. A rapid and almost complete deacetylation of histone H3 lysine 14 in the somatic nucleus followed by an equally rapid and complete re-acetylation after activation was observed after the injection of a cumulus cell nucleus into ME and AE cytoplasts. In contrast, histone deacetylation occurred at a much lower level in IE cytoplasts. Despite these differences, the cloned embryos generated from the three types of cytoplasts developed into blastocysts of equivalent total and inner cell mass mean cell numbers, and the rates of blastocyst formation and embryonic stem cell derivation were similar among the three groups. The cloned embryos produced from ME and AE cytoplasts showed an equivalent rate of full-term development, but no offspring could be obtained from the IE group, suggesting a lower reprogramming capacity of IE cytoplasts. Our results demonstrate the usefulness of AE in mouse SCNT procedures, as an alternative to ME. AE can facilitate oocyte enucleation and avoid the need for expensive microscope optics, or for potentially damaging Hoechst staining and u.v. irradiation, normally required in ME procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号