首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LNG加气站槽车BOG压缩液化回收研究   总被引:1,自引:1,他引:0  
近年来,在LNG加气站快速发展的同时,LNG车辆发展相对缓慢,导致LNG加气站蒸发气(boil-off gas,简称BOG)量较大,特别是LNG槽车卸车后残余压力为0.2~0.4 MPa的BOG,给LNG加气站带来了较大的经济损失和安全隐患。提出了基于BOG压缩机的BOG压缩液化工艺和装置,利用LNG冷量回收BOG,实现加气站BOG零排放。在此基础上,搭建了实验装置,并采用液氮和LNG开展了BOG回收实验。实验数据表明,当BOG和LNG质量比为3%时,该工艺BOG液化回收率在90%左右。由此可知,该工艺可以实现槽车的BOG快速高效回收。  相似文献   

2.
液化天然气(LNG)储存运输过程中产生的闪蒸气(boil off gas,BOG)具有一定的安全隐患。本文基于前人关于BOG的研究,查阅大量文献,对BOG的主要组成、产生原因和环境影响进行归纳整理,对以往的传统处理工艺以及新型处理工艺进行总结分析,对减少BOG排放量的相关措施进行评述,并总结目前已经得到应用的新技术,以期为今后更高效地利用BOG提供参考。  相似文献   

3.
蒸发气(Boil-Off Gas,BOG)的处理是LNG加气站应考虑的关键问题之一,关系着加气站的能耗及安全平稳运行。为此,建立了LNG加气站BOG产生量静态计算模型,以兰州市某加气能力为1.5×10~(4)m~3/d的加气站为研究对象,设计提出了1套利用液氮冷量的BOG再液化装置(1台液氮储罐,1台BOG/液氮换热器,1台LNG收集罐及管路阀门),以避免BOG直接放散造成的能源浪费和环境污染,实现加气站BOG"零排放"。在此基础上,理论计算了BOG再液化装置的再液化能力,并对其进行经济效益分析。结果表明,加气站BOG的产生量为322kg/d,BOG再液化量与液氮消耗量质量比为1∶1.92,为试验装置的设计提供了理论依据。该装置安全寿命期内静态分析总投资费用为39万元,税前年利润总额为14.4万元,净利润为10.5万元,经济效益较为显著。由此可知,LNG加气站应考虑BOG再液化装置投资。  相似文献   

4.
《天然气化工》2019,(6):86-92
针对青岛LNG接收站BOG处理过程中LNG提供冷量不足引起管道振动、阀门异常现象进行优化模拟研究。基于青岛LNG接收站BOG处理单元实际运行工艺,以Aspen HYSYS流程模拟软件为研究手段对各问题现象点进行分析研究,建立符合实际流程的LNG接收站稳态模型,寻找关键工艺节点,以各设备安全运行的同时降低能耗为目标,对卸船与非卸船两种工况下的各节点进行可操作参数优化研究,得出不同BOG产生量下各节点对应的最小LNG冷凝需求量。同时对不同设备所需的LNG冷凝量变化进行对比分析,得出相应的敏感性大小。所得结果可为现场实际生产运行提供理论参考。  相似文献   

5.
针对液化天然气(LNG)接收站投产初期尚未建立气态外输系统时的蒸发气(BOG)处理问题,基于LNG接收站典型流程提出了新型BOG回收方案。以某大型LNG接收站为例,采用HYSYS软件对新型BOG回收流程进行了模拟计算,明确了新型BOG回收流程应用条件。从技术及经济性两方面验证了新型BOG回收流程是LNG接收站零气态外输工况下BOG处理的有效方式,为LNG接收站的BOG处理提供了新的思路。  相似文献   

6.
LNG接收站蒸发气处理系统的动态设计计算模型   总被引:2,自引:0,他引:2  
准确合理地预测蒸发气(BOG)量,对于LNG储罐安全管理、LNG卸船操作安全管理、BOG压缩机能力选择、BOG压缩机启停操作与提效节能和稳定利用BOG燃料气等均具有重要意义。国外已有一些理论化的BOG蒸发率(BOR)动态计算模型,但计算复杂且由于其对LNG储罐内BOG产生机理的认识是建立在一定理论假设的基础上的,对实际LNG储罐内BOG产生机理的认识不够准确,加之各种实际操作工况要复杂得多,因此,这类模型的广泛适用性仍有待考证。为此,基于BOG生成机理的基本理论和传热动力学理论,结合具体LNG接收站储罐生产操作数据,得到了半经验化的BOR(Boil Off Rate)动态模型,实例证实:该方法方便、有效,更有利于预测和指导生产实际。  相似文献   

7.
LNG接收站BOG再冷凝器系统不稳定问题探究   总被引:2,自引:0,他引:2  
大鹏LNG(液化天然气)接收站是我国第-个LNG项目,BOG(蒸发气)再冷凝器运行中存在不稳定现象.分析了试运时的各种状况,根据目前实际情况,得出BOG系统设计时瞬态性能考虑不足造成运行不稳的结论.针对此情况,在实践中摸索出-些弥补措施,通过手动操作阀门人工进行提前调整,可以改善其动态性能.针对大鹏LNG目前不能停产,原有系统难以改造的现状,提出了新的改进再冷凝器的解决思路和建议,增设-台结构紧凑、LNG与BOG不直接混合的板壳式换热器,以减少外界生产条件的瞬态变化对再冷凝器的液位、压力调节影响.  相似文献   

8.
随着我国天然气行业的发展,越来越多的LNG接收站兴建起来。由于LNG的特殊性,生产运营过程中不可避免地将产生BOG。为了给LNG接收站选择合适的BOG处理工艺,分析现行的BOG直接输出和再冷凝工艺,着重从装置构成、能耗和运营成本等方面对比BOG再液化和CNG外输两种工艺,结果表明,BOG再液化投资、能耗较高,但与CNG相比仍然具有优势。同时,对现有BOG再液化工艺流程进行优化,使BOG经再液化压缩机升压后既能进行再液化回收,也能直接外输进入管网。该研究可为新建LNG接收站的BOG处理工艺选型提供参考。  相似文献   

9.
在LNG接收站开车、运行过程中,BOG管网进液可能导致BOG再冷凝系统停车、LNG储罐超压损坏、火炬火雨等严重后果。对LNG接收站BOG管网的潜在进液点进行了分析,讨论了进液危害及应对措施,并从设计、操作管理等方面提出优化措施,为LNG接收站工程设计、开车预冷、运维等提供参考和实践指导。  相似文献   

10.
随着近几年大气环境的恶化,新型汽车燃料液化天然气(LNG)备受推崇,我国在各地兴建LNG工厂。在LNG生产和储存过程中会产生大量的蒸发气(BOG),准确计算各工况下的BOG量并制定最优的处理工艺,对降低LNG工厂能耗,提高工厂经济效益具有重要作用。结合LNG工厂的工艺流程,采用理论分析和工程实践经验相结合的方法,分析BOG产生的原理,讨论LNG工厂BOG的处理工艺。给出了LNG工厂在LNG生产和储存过程中产生BOG量的系统计算方法,及不同工况下适宜的BOG处理工艺。  相似文献   

11.
一般LNG接收站产生的BOG中含有大量的氮气,热值低,若直接压缩成CNG则严重影响汽车的动力性能;若利用再冷凝工艺采用低温BOG压缩机,因低温BOG压缩机太昂贵,对于小型LNG接收站来说不经济。为此提出一种常温压缩再冷凝的BOG回收工艺,即先将BOG加热到常温再增压,自身预冷回收冷量后再和增压后的过冷LNG混合液化,即可得到合格的LNG,其氮气、甲烷含量和热值均满足要求。通过HYSYS软件模拟,证明采用这种工艺流程完全可以回收一些小型LNG接收站产生的BOG,避免了BOG资源的浪费。  相似文献   

12.
液化天然气由于其特殊的存储方式,因而在汽化时将放出巨大的冷量。如何将这些冷量有效的利用起来,应用到空气分离装置中,是本文研究的重点。在对LNG的冷量进行火用分析的理论基础上,分别对该过程中提高装置的液化率和降低空分装置的压力两方面进行探讨,从而对实际设计生产单位提出了合理化的建议。  相似文献   

13.
张绍光 《石油化工》2002,31(12):1002-1005
低温保冷技术是石油化工企业特别是乙烯行业的重要节能技术之一。本文报道了对中国石化齐鲁股份有限公司乙烯装置部分低温设备及管道保冷效果的测定结果;介绍了冷量损失的测试方法;定量评价了该公司乙烯装置低温系统冷量损失的程度。根据现场探测情况,分析了造成装置冷量损失较大的主要原因;提出了装置保冷技术改造的建议。  相似文献   

14.
LNG接收站BOG处理工艺优化——以青岛LNG接收站为例   总被引:2,自引:0,他引:2  
蒸发气(Boil Off Gas,缩写为BOG)的处理是LNG接收站必须考虑的关键问题之一,关系着LNG接收站的能耗及安全、平稳运行。为此,介绍了LNG接收站BOG处理的4种工艺:①BOG直接压缩工艺;②BOG再冷凝液化工艺;③BOG间接热交换再液化工艺;④蓄冷式BOG再液化工艺。运用HYSYS软件建立了采用不同BOG处理工艺的LNG接收站模型,对比了目前主要采用的BOG直接压缩工艺和再冷凝液化工艺在工艺流程及能耗方面的差异,并分析了外输量、外输压力及再冷凝器压力对BOG处理工艺节能效果的影响,在此基础上提出了BOG再冷凝液化工艺的改进措施——BOG进入再冷凝器前进行预冷,可比原工艺节约18.2%的能耗。同时还针对青岛LNG接收站提出了BOG再冷凝液化及直接压缩工艺混合使用的优化运行方案,可使进入再冷凝器的LNG流量保持恒定,没被冷凝的BOG经过高压压缩机提压到外输压力,与完成气化的LNG混合后外输,可避免BOG进入火炬系统而造成的能源浪费,同时减小再冷凝器入口流量的波动,使装置运行更稳定、更经济。  相似文献   

15.
长江内河LNG项目资源采用沿海接收站二程转运方式运输,饱和压力高,LNG运输船在内河航行时要受到航速限制且不能夜航。本文基于BOG分析程序计算了小型LNG运输船在长江内河航行期间BOG蒸发及消耗情况,分析了长江内河LNG接收中转站BOG处理面临的主要问题,包括装载的LNG货物温度高,装船后船舱压力大;航行速度低,BOG无法被完全消耗;卸料过程产生BOG量大,处理困难等。在此基础上,提出了降低新建内河小型LNG运输船的日蒸发率,在接收站内配置大功率BOG压缩机,在小型LNG转运船上增加BOG再液化装置以及从政策方面推动取消长江内河LNG运输船不能夜航的限制等解决方案,从而为长江内河LNG接收中转站BOG处理提供了参考依据。  相似文献   

16.
长江内河LNG项目资源采用沿海接收站二程转运方式运输,饱和压力高,LNG运输船在内河航行时要受到航速限制且不能夜航。本文基于BOG分析程序计算了小型LNG运输船在长江内河航行期间BOG蒸发及消耗情况,分析了长江内河LNG接收中转站BOG处理面临的主要问题,包括装载的LNG货物温度高,装船后船舱压力大;航行速度低,BOG无法被完全消耗;卸料过程产生BOG量大,处理困难等。在此基础上,提出了降低新建内河小型LNG运输船的日蒸发率,在接收站内配置大功率BOG压缩机,在小型LNG转运船上增加BOG再液化装置以及从政策方面推动取消长江内河LNG运输船不能夜航的限制等解决方案,从而为长江内河LNG接收中转站BOG处理提供了参考依据。  相似文献   

17.
《天然气化工》2017,(1):93-97
针对国内LNG接收站投产初期BOG无法回收的问题,以某典型LNG接收站为例,优化确定BOG回收处理规模,分析比较了氮膨胀制冷工艺、混合冷剂制冷工艺和喷射制冷工艺的优缺点,结果表明喷射制冷工艺以其操作弹性大、易维护、可即停即起的特点,更能满足LNG接收站对BOG回收处理装置的要求。  相似文献   

18.
介绍了蒸发气(BOG)处理工艺,通过分析往复式和离心式BOG压缩机的结构形式、流量调节和性能曲线等方面,从技术、现场安装及经济性等角度介绍了液化天然气(LNG)接收站BOG压缩机的选型原则。分析表明,往复式BOG压缩机负荷调节灵活、处理量小,其中的立式迷宫密封式往复压缩机性能可靠、维护成本低,在LNG接收站供气量小的早期阶段应用较广泛。随着LNG接收站整体接收能力的增强,BOG处理量增大,整体齿轮离心式BOG压缩机在大流量、运行可靠性和维护成本等方面凸显优势。为优化资源配置、满足多变的外输工况,举例说明可将离心式压缩机和原有往复式压缩机并联使用,以充分发挥二者的调节优势。  相似文献   

19.
蒸发气(BOG—Boil Off Gas)的处理是LNG储备库必须考虑的关键问题之一,它关系着LNG储备库的能耗、安全及平稳运行。为减少因BOG放空而造成的巨大损失,有必要采用BOG回收技术。在分析适用于LNG储备库的BOG回收方法的基础上,又提出甲烷制冷剂液化循环、混合制冷剂液化循环及氮气膨胀制冷液化循环3种BOG再液化方案,进一步减少由LNG储备库运行所产生的热量损失。用HYSYS软件模拟工艺流程对比分析了3种方案所需制冷剂流量及系统功耗,结合有效能相关理论确定适用于LNG储备库的BOG再液化方案——混合制冷剂液化循环方案。该方案的压缩机轴功率比甲烷制冷剂再液化方案小15.30kW,比氮气膨胀再液化方案小146.42kW,且系统功耗相对较小;混合制冷剂液化循环方案系统有效能损失较氮气膨胀液化方案小22.06%,较甲烷制冷剂再液化方案小35.78%;此外,该方案所需制冷剂流量较少,适用于储备规模较大的LNG储备库。  相似文献   

20.
浙江LNG接收站卸料管线BOG预冷模拟研究   总被引:1,自引:0,他引:1  
由于LNG的低温特性,在其首次进入接收站工艺系统前,需要先对LNG卸料管线采用低温LNG蒸气(BOG)预冷至-120 ℃,然后再引入LNG将卸料管线冷却至-150 ℃。卸料管线预冷是确保LNG接收站顺利投产试运行的重点工作。为此,以浙江LNG接收站为例,采用自编程序建模,针对管径为1 000 mm长距离LNG卸料管线的BOG预冷过程,建立了一维流动传热模型,借助MATLAB工具模拟了BOG预冷LNG接收站卸料管线的整个过程,结果显示:卸料管线壁面温度下降速率最大不超过10 ℃/h,计算时间步长取10 s,计算得出737 m的LNG卸料管线冷却到-120 ℃左右所需时间为30.25 h。同时还分析了不同因素对卸料管线预冷过程的影响,结果显示:①冷却用BOG流量随着时间的推移逐渐增大,在冷却结束阶段,BOG流量达40.95 kg/s,累积BOG消耗量为14 330 kg;②管道内BOG流速随冷却时间增加而增大;③管道内BOG压力随冷却时间及管道长度的增加而减小。建议实际操作中,将管线冷却至-100 ℃即可进入LNG冷却阶段,可节省整个管线的冷却时间及BOG用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号