首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为准确考察本煤层钻孔有效抽采半径,根据煤层瓦斯流动理论建立了钻孔瓦斯流量与时间的关系式,分析了在不同瓦斯赋存条件下进行试验考察的指标标准,并结合肥田煤矿为突出煤层开采的实际情况采用瓦斯含量和抽采率指标法确定抽采达标时间,最终得出抽采半径与抽采时间之间的相关关系为R=0. 7005lnt-2. 0749。考察结果表明:有效抽采半径随时间增加而增大,逐渐趋于极限有效抽采半径2m;抽采时间为37d、89d、168d、318d时对应的有效抽采半径为0. 5m、1m、1. 5m、2m。通过现场试验证明钻孔流量法可用于本煤层钻孔抽采半径考察。  相似文献   

2.
为解决高瓦斯突出煤层预抽煤层瓦斯过程中存在抽放钻孔设计不合理易导致突出危险性未能消除的问题,通过对初始释放瓦斯膨胀能和瓦斯压力、瓦斯含量关系的分析,提出了基于初始释放瓦斯膨胀能测定钻孔极限抽放半径的新技术,并在高河煤矿进行了现场应用。结果表明基于初始释放瓦斯膨胀能测定钻孔极限抽放半径是一种简单有效的方法,高河煤矿3~#煤层北翼西回风巷极限抽放时间为150 d,极限抽放半径为1.5 m。  相似文献   

3.
为了解决煤矿瓦斯抽采半径确定不准而影响抽采效果的问题,采用数值模拟和现场考察相结合的方法研究了急倾斜特厚煤层瓦斯抽采钻孔的抽采半径、瓦斯抽采流量与抽采时间的关系,确定了极限抽采时间和极限抽采半径等重要参数。研究结果表明,45#煤层抽采半径随抽采时间的增加呈幂函数规律变化,极限抽采时间为158 d,经济抽采半径为2.72 m,经济抽采时间为135 d,极限抽采半径为2.81 m。  相似文献   

4.
为提高新元煤矿低透高突煤层的瓦斯抽放效果,对瓦斯抽采钻孔进行气相压裂后的瓦斯抽采半径进行了研究。通过理论分析得出,合理布置钻孔间距是提高瓦斯抽采量的有效方式,增加钻孔孔径和抽采负压受到诸多条件的限制。通过现场实测得出,原始钻孔瓦斯流量衰减系数为0.102/d~0.129/d,压裂后变为0.018/d~0.051/d,煤层由难抽采改造成为可以抽采的类型;原始钻孔在抽采60d后,瓦斯抽采半径维持在0.82m左右,压裂后的抽采半径从30d的1.62m逐渐增加到150d的3.52m,压裂后的抽采有效半径提高了2.1~4.3倍。研究将为低透高突煤层矿区的瓦斯抽采工程治理提供借鉴。  相似文献   

5.
针对本煤层分段水力造穴钻孔抽采半径定义不明确、难以确定的问题,以古城煤矿3号煤层为背景,开展本煤层分段水力造穴钻孔抽采半径考察现场试验研究,结合不同试验钻孔的瓦斯抽采流量现场监测,运用瓦斯储量法考察了本煤层分段水力造穴钻孔和普通钻孔的抽采半径,获得了不同类型试验钻孔的抽采半径时变规律以及本煤层分段水力造穴对瓦斯抽采半径的扩大作用。结果表明:①在相同抽采时间内,前进式本煤层分段水力造穴钻孔和后退式本煤层分段水力造穴钻孔的抽采瓦斯纯量平均值分别是普通钻孔的3.08倍和3.79倍,抽采半径分别是普通钻孔的2.14~5.62倍和2.58~5.88倍,本煤层分段水力造穴钻孔能够显著提高钻孔瓦斯抽采纯量,有效扩大钻孔瓦斯抽采半径,且后退式本煤层分段水力造穴钻孔的扩大作用更加显著;②普通本煤层抽采钻孔和本煤层分段水力造穴钻孔的瓦斯抽采半径均具有时变特性,即抽采半径随着抽采时间的延长而相应扩大,并逐渐趋于某一极限值;抽采240 d后,普通钻孔的抽采半径基本达到极限,60 d内仅增长了0.01 m左右,钻孔瓦斯流量逐渐衰竭,而本煤层分段水力造穴钻孔的抽采半径仍能随时间延长而有效增长,瓦斯流量仍保持稳定,说明本煤层分段水力造穴钻孔的有效抽采时间和钻孔抽采寿命比普通本煤层钻孔更长。  相似文献   

6.
钟后选 《煤矿安全》2013,44(8):166-168
基于有效压力指标法测定原理及方法,对河北某矿煤层钻孔有效抽放半径进行了测定,得出有效抽放半径与抽放时间之间的拟合曲线,认为该煤层89 mm抽放钻孔的极限有效影响半径为8.7 m,极限抽放时间为300 d,而抽放时间定为90 d,即有效抽放半径为4.5 m比较经济合理。  相似文献   

7.
为了测定煤层瓦斯抽采半径,为瓦斯抽采设计及制定煤层防突措施提供指导,以祥升煤矿6号煤层为研究背景,在井下布置了5个瓦斯压力测试钻孔,通过现场实测得到60d的瓦斯压力变化数据,并由此分析得到祥升煤矿6号煤层瓦斯有效抽采半径。通过现场实测表明:抽采30d的有效抽采半径为3.34m,抽采60d的有效抽采半径为4.80m。  相似文献   

8.
为合理确定顺层瓦斯钻孔有效抽采半径,依据煤层瓦斯流动达西定律、菲克扩散定律和质量守恒定律,建立了钻孔周围煤体瓦斯流动方程,分析了不同评判指标下有效抽采半径确定方法,并基于景福煤矿瓦斯衰减系数测算值采用抽采率指标法进行了有效抽采半径的计算,结果表明:有效抽采半径随时间增加而增大,逐渐趋于极限有效抽采半径1.4m;抽采时间为86d时,有效抽采半径增大速度减缓,抽采半径达1.33m,为极限半径的95%。  相似文献   

9.
《煤》2016,(3):3-6
文章简要介绍了一种新型煤层增透技术——二氧化碳气相压裂,并通过现场试验测试了试验区域原始煤层与气相压裂后有效抽采半径与钻孔瓦斯抽采量。通过数据分析认为,原始煤层有效抽采半径为58 d达到1.5 m,实施气相压裂后,煤层有效抽采半径为57 d达到3 m,抽采钻孔有效抽采半径有明显增加,并且气相压裂后钻孔瓦斯抽采量提高2倍以上。  相似文献   

10.
针对经坊煤业煤层瓦斯赋存情况,为统筹考虑打钻成本,避免不必要的浪费,在保证工作面瓦斯抽采达标的情况下,用相对压力指标的测定方法测定了顺层瓦斯钻孔抽放半径。通过在煤层打一排测压孔并安设压力表,来记录原始压力,再进行抽放。观察各测压孔瓦斯变化情况,压力下降到稳定压力10%以上的钻孔为抽放影响范围内钻孔,将距抽放钻孔最远的一个抽放影响范围内钻孔到抽放钻孔的距离视为影响抽采半径。通过试验,经坊煤业3~#煤层?113 mm钻孔,抽放时间为180d时,有效抽采半径为2.0m,钻孔间距由3m变为4m。  相似文献   

11.
针对某煤矿煤层抽采难易程度为勉强抽采的11-2煤层,提出了采用顺层钻孔压降法测试,介绍了测试原理及具体方法,并将该方法进行了现场试验,测试结果表明:11-2煤层釆用94 mm钻孔进行煤层瓦斯抽釆,当抽釆负压为16 k Pa,抽采时间为32 d时,其抽釆影响半径为3.5 m,钻孔抽采27 d时影响半径为3 m,抽釆37 d后影响半径为4 m,抽釆45 d后影响半径为5 m.根据抽釆时间与半径之间的幂函数关系,优化了11-2煤层底板顺层钻孔的布置,为该煤矿瓦斯抽采及防治工作提供了重要依据。  相似文献   

12.
《煤矿机械》2018,(1):7-9
针对潘三矿11-2煤层现场实际情况,基于瓦斯含量法对该煤顺层钻孔的瓦斯抽采半径进行考察,得出抽采38 d后的瓦斯抽采有效半径约为4.5 m;此外通过COMSOL软件对11-2煤层钻孔瓦斯抽采进行数值模拟,得出模拟结果与现场实测分析结果基本一致。结果验证了研究的准确性和可靠性,为类似顺层钻孔的抽采半径的研究提供参考。  相似文献   

13.
瓦斯抽采半径的确定是制定防突措施的根本依据,合适的选取能充分利用钻孔以提高矿井的瓦斯抽采率。本文利用相对瓦斯压力指标来现场试验测定凤凰山煤矿16~#煤层抽采瓦斯半径,得出抽采时间为80 d时,抽采有效半径为2.2 m,抽采影响半径为3.2 m。  相似文献   

14.
马家田煤矿21064工作面采用顺层钻孔抽采瓦斯作为区域防突措施。为了给瓦斯抽采钻孔的布置提供理论依据,需要确定瓦斯抽采半径以及合理的布孔间距。布孔间距是由瓦斯抽采钻孔有效半径决定的,采用压降法和示踪气体法测试抽采影响半径,采用压降法和流量法计算有效抽采半径。现场3组抽采观测孔连续采集50 d的钻孔瓦斯抽采参数,绘制了参数随时间变化曲线,分析得出了瓦斯抽采影响半径与预抽时间的关系公式,确定出抽采极限影响半径为5.4 m。M6煤层回采工作面抽采达标时瓦斯预抽率应不小于37.5%,分析瓦斯抽采流量规律得出M6煤层瓦斯抽采有效半径公式。对应不同预抽期,计算出M6煤层顺层预抽钻孔的理论最大孔间距分别为1.06、1.56、1.82、1.94、2.00 m,对应合理布孔间距分别取1.0、1.5、1.8、1.9、2.0 m。  相似文献   

15.
孙赫 《煤炭技术》2024,(3):165-168
煤层瓦斯压力大、渗透率低等因素增加了瓦斯抽采工作的难度。针对煤层群条件下的穿层钻孔布置问题,以山西某矿为例,通过数值模拟,现场测试方法对瓦斯抽采半径与抽采效果进行了研究。运用COMSOL模拟软件,分析了φ75、φ94、φ113 m直径抽采钻孔与30、60、90、120 d抽采时间条件下的瓦斯压力演化规律。结果表明:φ113 mm直径钻孔的抽采效果最好,但考虑成本因素,最终选取瓦斯抽采钻孔直径为φ94 mm,极限抽采时间为120 d。通过压降法现场测定了山西某矿5#、8#、12#煤层的有效抽采半径随时间的演化趋势。经瓦斯抽采效果评判,消除了矿井煤与瓦斯突出危险性。  相似文献   

16.
为了高效、低成本地抽采煤层中的瓦斯,运用理论计算和现场测试两种方法对钻孔抽采的影响范围进行了研究。研究结果表明,顺层钻孔抽采影响范围在前期随着抽采时间的延长而增加。现场基于钻孔瓦斯压力的变化,通过分析不同抽采时间下钻孔有效抽采半径,确定了预抽60d有效抽采半径为2.5m,为竹林山煤矿瓦斯治理提供了参考。  相似文献   

17.
《煤炭技术》2016,(12):235-237
为了提高滴道盛和矿30~#工作面瓦斯抽采钻孔间距布置的合理性,优化抽采效果,以钻孔瓦斯自然涌出量为指标,在不同孔间距条件下开展钻孔瓦斯抽采有效半径的测试。结果表明:采用瓦斯流量法对该煤层钻孔瓦斯有效抽采半径进行测试是可行的,抽采60 d时,其有效抽采半径为2.84 m;抽采90~180 d时,有效抽采半径为3.22~3.89 m。  相似文献   

18.
为解决本煤层准确测定瓦斯抽采有效半径问题,对传统压降法钻孔布置方式进行了改进,提出了"一抽一测"的钻孔布置方法。在同一水平高度,分组布置间距不等的抽采孔与测压孔,通过观察测压孔压力变化情况,结合压降曲线确定瓦斯抽采有效半径。现场试验结果表明:随着抽采时间延长,钻孔瓦斯抽采有效半径逐渐增大,抽采12 d时有效半径为1.5 m,20 d时达到2 m,60 d时,有效半径可达3.5 m,抽采90 d时,接近4 m,此后抽采影响范围不再扩大。  相似文献   

19.
陈祖国 《陕西煤炭》2020,39(1):74-76,103
钻孔有效抽采影响半径是确定钻孔布置参数以及预测瓦斯抽采消突时间的重要依据。确定顺层瓦斯抽采钻孔合理布置参数,采用数值计算的方式,对不同抽采时间下顺层钻孔瓦斯抽采有效影响半径进行计算,并现场考察验证。研究结果表明:相同抽采条件下,抽采钻孔直径为75 mm,抽采时间为120 d时,抽采影响半径达到了1.0 m;抽采时间为60 d时,抽采影响半径达到了0.5 m,与数值计算结果基本相同。在实际工作中应日常性收集煤层瓦斯赋存、瓦斯涌出等相关资料;经常分析瓦斯地质变化情况,在地质构造带或局部瓦斯富集区或煤厚变化地带进行采掘活动时,应采取安全技术措施。  相似文献   

20.
针对现有煤层瓦斯有效抽放半径测定方法实用性差的问题,尤其是压降法对封孔要求较高的问题,提出了基于抽采达标所需抽采量,进而计算出达标抽采时间来确定抽采半径的新方法。通过测试不同间距试验钻孔单日瓦斯抽采量随抽采时间的变化规律,然后确定总的抽采量并与达标抽采量作比较得出不同抽采间距的抽采时间,最终确定合理的抽采间距,并在正珠煤矿进行了现场试验。现场试验表明钻孔间距2 m组、3 m组、4 m组所在区域抽采达标所需预抽时间分别为236、260、273 d。根据抽采钻孔间距与抽采达标时间拟合公式,当设计预抽时间为240 d时,有效抽采半径为1 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号