首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
在移动边缘计算(mobile edge computing, MEC)系统中,用户的卸载策略会影响能耗和计算成本,进而影响用户效益.然而,目前多数研究未考虑边缘服务器随机分布场景中用户的卸载策略和资源请求策略对效益的影响.针对该问题,提出了一种基于改进双重拍卖算法的计算卸载和资源分配策略.首先,该策略将用户与边缘服务器之间的交互过程建模为Stackelberg博弈,并且证明了在该博弈内存在唯一纳什均衡点;其次,计算出用户对于不同服务器的卸载意愿以及计算资源请求量,并将用户与最优服务器进行拍卖;最后,采用遍历法交换上一轮拍卖中部分交易中的用户与服务器,以实现系统整体效益最优.仿真实验结果表明,与其他基准算法相比,所提算法在服务器随机分布场景下提高了33.4%的系统用户总效益,有效降低系统损失.  相似文献   

2.
当前,多数车联网任务卸载工作仅考虑时延因素将任务卸载至边缘服务器执行(LOCAL-MEC),但是,车载单元仍有一定的计算能力可以利用.针对上述问题,研究了任务卸载的总代价即时延和能耗两个目标,提出一个将车辆自身的计算单元、附近车辆的计算单元与边缘服务器协同计算的任务卸载模型.该模型既考虑了任务的优先关系,又同时考虑了系统的时延和能耗.通过借鉴模拟退火算法思想并引入压缩因子改进粒子群算法来实现任务卸载.实验结果表明:与其他任务卸载策略相比,提出的任务卸载策略优化效果明显,TPSO算法的总代价为传统粒子群算法的53.8%、LOCAL-MEC策略的27.1%、DCOS(distributed computation offloading scheme)算法的78%,并且适用于多种现实场景.  相似文献   

3.
4.
在万物互联的时代,数据量与计算需求飞速增长,促使应用部署方式由云计算模式向边缘计算模式演进,以解决带宽消耗严重和响应时延过高等问题。为推进面向边缘网络的任务卸载,需要解决应用服务提供商(ASP)与边缘计算提供商(ECP)之间的双向选择问题。针对这一问题,提出一种面向边缘计算的组合拍卖式任务卸载机制。首先建立系统模型,并对模型落地的关键问题进行说明,然后分析ECP的投标决策过程,证明选择最大化资源利用率的任务组合是NP完全问题,进而提出一种启发式任务选择算法。在此基础上,设计两种拍卖算法,单胜者拍卖和多胜者拍卖,分别适用于可信度优先和效率优先的场景。实验结果表明,相较于单项拍卖机制,所提出的方案提高ECP资源利用率达13%,同时增加ASP收益达37%。  相似文献   

5.
由于车辆自身的高速移动性和资源有限性等特征,使得采用传统通信和计算手段的车联网场景无法满足用户日益增长的数据计算需求和体验质量需求。采用5G和边缘计算技术构建的新型车联网架构可以满足以上需求,但由于网络结构的变化,需设计适合新场景下的车辆任务通信和计算策略。针对5G车联网场景下的移动车辆任务动态卸载问题进行研究,提出了对应的动态任务分配策略和卸载调度低时延算法。车辆会根据提出的策略和算法将未完成的计算任务卸载到相应的 MEC 服务器或车辆上,并且计算结果将通过边缘服务器之间的联合通信或直接从被选择接受卸载任务的附近空闲车辆上直接返回给车主。仿真结果表明,所提出的策略和算法在优化卸载延迟方面具有良好的性能,并提高了用户体验质量。  相似文献   

6.
针对车联网场景下的边缘计算系统中MEC服务器负载不均衡,紧急任务无法得到优先处理的问题,提出一种基于麻雀搜索算法的计算卸载策略(COSSA)。以最小化VEC系统的任务计算时延和MEC资源服务费为目标建立数学模型,利用层次分析法根据任务的属性为每个需要卸载任务分配优先级,运用麻雀搜索算法根据目标函数找出最优的卸载决策,实现服务器负载均衡。实验结果表明,与Random、ALP和OMP策略相比,COSSA策略可以有效地降低系统开销、均衡MEC服务器负载。  相似文献   

7.
针对车联网中边缘节点的可信性无法保证的问题,提出了一种基于声誉的车联网可信任务卸载模型,用记录在区块链上的边缘节点声誉来评估其可信度,从而帮助终端设备选取可靠的边缘节点进行任务卸载。同时,将卸载策略建模为声誉约束下的时延和能耗最小化问题,采用多智能体深度确定性策略梯度算法来求解该NP-hard问题的近似最优解,边缘服务器依据任务卸载的完成情况获得奖励,然后据此更新记录在区块链上的声誉。仿真实验表明,与基准测试方案相比,该算法在时延和能耗方面降低了25.58%~27.44%。  相似文献   

8.
李智  薛建彬 《计算机应用》2022,42(10):3140-3147
网联车辆节点产生的不同属性的大数据流量计算任务进行传输并卸载时,通常引起通信系统中时延抖动、计算能耗与系统开销大等问题,因此,根据实际通信环境,提出一种C-V2X车联网(IoV)中基于模拟退火算法(SAA)的任务卸载与资源分配方案。首先,根据任务处理优先程度,对处理优先程度较高的任务进行协同卸载计算处理;其次,通过全局搜索最优卸载比例因子的方式,制定了一种基于SAA的任务卸载策略,且分析并优化了任务卸载比例因子;最后,在任务卸载比例因子更新过程中,将系统开销最小化问题转化为功率和计算资源分配凸优化问题,并利用拉格朗日乘子法获取最优解。通过对所提算法与本地卸载、自适应遗传算法等作比较可知,随着计算任务的数据量不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了5.97%、49.40%、49.36%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了6.35%、92.27%、91.7%;随着计算任务CPU周期数不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了16.4%、49.58%、49.23%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了19.61%、94.39%、89.88%。实验结果表明,SAA不仅能降低通信系统时延、能耗及系统开销,还可以使结果加速收敛。  相似文献   

9.
针对车联网任务卸载的资源最优化问题,以无线供能移动边缘计算(WP-MEC)系统为基础,提出一种关于计算时间分配、能耗、本地计算能力和任务卸载的联合优化方案。在该系统中,将“收集然后传输”协议应用于车辆的能量采集和消耗阶段,确保车辆可以持续工作。为求解该最优化问题,提出一种基于模拟退火算法的系统能量效率最大化算法。实验结果表明,所提策略的平均电池电量比全卸载模式、仅本地计算模式提高了40%以上,有效降低了系统时延,验证了所提策略的有效性和高效性。  相似文献   

10.
随着车联网应用服务体系日益丰富,计算资源有限的车辆难以处理这些计算密集和时延敏感的车联网应用。计算卸载作为移动边缘计算中的一种关键技术可以解决这一难题。对于车联网中动态的多车辆多路侧单元的任务卸载环境,提出了一种基于联邦深度强化学习的任务卸载算法。该算法将每辆车都看作是智能体,采用联邦学习的框架训练各智能体,各智能体分布式决策卸载方案,以最小化系统的平均响应时间。设置评估实验,在多种动态变化的场景下对提出的算法的性能进行对比分析。实验结果显示,提出的算法求解出的系统平均响应时间短于基于规则的算法和多智能体深度强化学习算法,接近于理想方案,且求解时间远短于理想方案。实验结果表明,所提算法能够在可接受的算法执行时间内求解出接近于理想方案的系统平均响应时间。  相似文献   

11.
随着智慧物联体系的发展,物联网中应用程序的种类与数量不断增加.在移动边缘计算(mobile edge computing, MEC)中,通过允许移动用户将任务卸载至附近MEC服务器以加快移动应用程序的速度.本文通过考虑不同任务属性、用户的移动性和时间延迟约束模拟移动边缘场景.根据用户移动轨迹,将目标建模为寻找满足时延约束条件且在卸载过程中产生最小能耗MEC服务器优化模型,并提出一种最小能耗卸载算法求解该问题的最优解.仿真结果表明,在约束条件下,提出的算法可以找到在用户移动轨迹中产生最小能耗的MEC服务器,并显著降低任务卸载过程的能耗与时延,提高应用程序服务质量.  相似文献   

12.
车辆边缘计算环境下任务卸载研究综述   总被引:3,自引:0,他引:3  
计算密集和延迟敏感型车辆应用的出现对车辆设备有限的计算能力提出了严峻的挑战,将任务卸载到传统的云平台会有较大的传输延迟,而移动边缘计算专注于将计算资源转移到网络的边缘,为移动设备提供高性能、低延迟的服务,因此可作为处理计算密集和延迟敏感的任务的一种有效方法.同时,鉴于城市地区拥有大量智能网联车辆,将闲置的车辆计算资源充分利用起来可以提供巨大的资源和价值,因此在车联网场景下,结合移动边缘计算产生了新的计算模式——车辆边缘计算.近年来,智能网联车辆数量的增长和新兴车辆应用的出现促进了对车辆边缘计算环境下任务卸载的研究,本文对现有车辆边缘计算环境下任务卸载研究进展进行综述,首先,从计算模型、任务模型和通信模型三个方面对系统模型进行梳理、比较和分析.然后介绍了最小化卸载延迟、最小化能量消耗和应用结果质量三种常见的优化目标,并按照集中式和分布式两种不同的决策方式对现有的研究进行了详细的归类和比较.此外,本文还介绍了几种常用的实验工具,包括SUMO、Veins和VeinsLTE.最后,本文围绕卸载决策算法复杂度、安全与隐私保护和车辆移动性等方面对车辆边缘计算任务卸载目前面临的挑战进行了总结,并展望了车辆边缘计算环境下任务卸载未来的发展方向与前景.  相似文献   

13.
车联网边缘计算是实现车联网系统低时延和高可靠性的关键技术,但现有方法普遍存在场景趋同和系统建模局限的问题,同时包含复杂的训练过程并面临维灾风险.通过结合云计算技术,提出一种基于多智能体强化学习的边云协同卸载方案.依据随机几何理论计算卸载节点覆盖概率,对车辆节点与卸载对象进行预配对.利用线性Q函数分解方法反映每个智能体多...  相似文献   

14.
移动边缘计算(mobile edge computing, MEC)已逐渐成为有效缓解数据过载问题的手段, 而在高人流密集的场景中, 固定在基站上的边缘服务器可能会因网络过载而无法提供有效的服务. 考虑到时延敏感型的通信需求, 双层无人机(unmanned aerial vehicle, UAV)的高机动性和易部署性成为任务计算卸载的理想选择, 其中配备计算资源的顶层无人机(top-UAV, T-UAV)可以为抓拍现场画面的底层UAV (bottom-UAV, B-UAV)提供卸载服务. B-UAV搭载拍摄装置, 可以选择本地计算或将部分任务卸载给T-UAV进行计算. 文中构建了双层UAV辅助的MEC系统模型, 并提出了一种DDPG-CPER (deep deterministic policy gradient offloading algorithm based on composite prioritized experience replay)新型计算卸载算法. 该算法综合考虑了决策变量的连续性以及在T-UAV资源调度和机动性等约束条件下优化了任务执行时延, 提高了处理效率和响应速度, 以保证现场观众对比赛的实时观看体验. 仿真实验结果表明, 所提算法表现出了比DDPG等基线算法更快的收敛速度, 能够显著降低处理延迟.  相似文献   

15.
考虑了多个设备的移动边缘计算(mobile edge computing, MEC)与端对端(device-to-device, D2D)技术协作网络, 其中多个无线设备的最终输出作为另一个设备上某个子任务的输入. 为了最小化无线设备的能耗和任务完成时间的加权和, 研究了最优的资源分配(卸载发射功率和本地CPU频率)和任务卸载决策问题. 首先固定卸载决策, 推导出卸载发射功率和本地CPU频率的闭合表达式, 运用凸优化方法求出该问题的解. 然后基于一次爬升策略提出了一种低复杂度线性搜索算法, 该算法可以在线性时间内获得最佳卸载决策. 数值结果表明, 该策略的性能明显优于其他有代表性的基准测试.  相似文献   

16.
移动边缘计算(mobile edge computing, MEC)是近年来出现的一种崭新技术,它能满足更多应用程序所需的计算资源,能使移动网络边缘资源受限的物联网(IoT)设备获得更好的性能.然而,众所周知,边缘基础设施在提高电力使用效率和整合可再生能源方面的能力较差.此外,由于物联网设备的电池容量是有限的,当电池电量耗尽时,所执行任务会被中断.因此,利用绿色能源来延长电池的使用寿命是至关重要的.此外,物联网设备间可以动态、有益地共享计算资源和通信资源.因此,为了提高边缘服务器的能效(power usage efficiency, PUE),实现绿色计算,设计了一种高效的任务卸载策略,提出了一种利用能量收集(energy harvesting, EH)技术和设备间通信(device-to-device communication, D2D)技术的绿色任务卸载框架.该框架旨在最小化任务执行所造成的边缘服务器端电网电力能源成本及云服务器端云资源租用成本.与此同时,引入激励约束,能够有效促进IoT设备间的协作,并防止IoT设备资源被其他设备过度使用.考虑到系统未来信息的不确定性,例如绿色能源的可获得性,提出了一种基于李雅普诺夫优化技术的在线任务卸载算法,该算法仅依赖于系统的当前状态信息.该算法的实现只需要在每个时间片内求解一个确定性问题,其核心思想是将每个时间片的任务卸载问题转化为图匹配问题,并通过调用爱德蒙带花树算法求得近似最优解.对所提出算法的性能进行了严格的理论分析,并通过实验验证了所提出框架的优越性能.  相似文献   

17.
陈彧  张胜  金熠波  钱柱中  陆桑璐 《软件学报》2023,34(12):5940-5956
在过去的近10年中,人工智能相关的服务和应用大规模出现,它们要求高算力、高带宽和低时延.边缘计算目前被认为是这些应用最适合的计算模式,尤其是视频分析相关应用.研究多服务器多用户异构视频分析任务卸载问题,其中用户选择合适的边缘服务器,并将他们的原始视频数据上传至服务器进行视频分析.为了有效处理众多用户对有限网络资源的竞争和共享,并且能够获得稳定的网络资源分配局面,即每个用户不会单方面地改变自己的任务卸载决策,该多服务器多用户异构视频分析任务卸载问题被建模为一个多玩家的博弈问题.基于最小化整体时延的优化目标,先后研究非分布式视频分析场景和分布式视频分析场景两种情形,分别提出基于博弈论的潜在最优服务器选择算法和视频单元分配算法.通过严格的数学证明,两种情形下提出的算法均可以达到纳什均衡,同时保证较低的整体时延.最后,基于真实数据集的大量实验表明,所提方法比其他现有算法降低了平均26.3%的整体时延.  相似文献   

18.
针对车联网中数据流量爆炸式增长而引起的业务响应时延过高的问题,提出了一种基于移动边缘计算的蚁群模拟退火算法缓存策略(ACSAM)。首先,在基于5G的车—边—云协同系统架构下,以最小化内容下载时延为目标,建立了通信计算模型;其次,采用蚁群算法构造了使内容下载时延最小的局部最优解;最后,使用模拟退火算法对局部最小下载时延进行扰动,并以一定概率接受新解,从而得到全局最小下载时延,即保证了内容被预缓存在最佳的位置。仿真结果表明,在车—边—云协同架构下,ACSAM缓存策略可显著减少传输冗余,降低下载时延。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号