首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The uncertainties of the mean diameters of the nominal 1.0 µm SRM® 1690 polystyrene spheres and of the nominal 0.3 µm SRM® 1691 polystyrene spheres are recomputed using the current NIST Guidelines for computing uncertainty. The revised expanded uncertainty (approximately 95 % confidence level) for SRM® 1690 polystyrene spheres is equal to 0.005 µm compared to previous value of 0.008 µm. The revised expanded uncertainty for SRM® 1691 is equal to 0.004 µm compared to the previous value of 0.007 µm. The major cause of the reduction in the uncertainty for the 1.0 µm spheres is from a decrease in the recomputed uncertainty of the refractive index of the polystyrene spheres. The 1.0 µm spheres were used in calibrating the electron microscope used to size the 0.3 µm spheres, and the reduction in the uncertainty of 1.0 µm SRM® uncertainty was the biggest factor in the decrease in the uncertainty of the 0.3 µm spheres.  相似文献   

2.
We describe a calibration system that measures the nonlinearity of optical fiber power meters (OFPMs) at a maximum power of 0.6 W and a minimum power of 0.2 mW at 1480 nm. The system is based on the triplet superposition method. This system measures the nonlinearity of OFPMs by using correction factors at different powers; the system is an important tool for characterizing OFPMs at high powers in the S band. The measurement uncertainties, typically better than 0.2%, k = 2, associated with the high-power nonlinearity system are also described.  相似文献   

3.
A total of fifteen laboratories participated in the CIE detector response intercomparison which was designed to assess the level of agreement among participating laboratories in the absolute measurement (with respect to SI) of photodetector response in the visible spectral region. Most participants were either commercial laboratories or university laboratories with the National Institute of Standards and Technology (NIST) serving as the host laboratory. Each laboratory determined the absolute response of each of two silicon photodiode radiometers which were designed for the intercomparison by NIST. Approximately two-thirds of the laboratories reported response values which agreed with the NIST values to within ±1.0% at the two wavelengths of 488 and 633 nm.3  相似文献   

4.
To explain a difference of 0.5 % between the absorbed-dose standards of the National Institute of Standards and Technology (NIST) and the National Research Council of Canada (NRCC), Seuntjens et al. suggest the fault lies with the NIST water calorimeter being operated at 22 °C and the method with which the measurements were made. Their calculations show that this difference is due to overprediction of temperature rises of six consecutive 60Co radiation runs at NIST. However, the consecutive runs they refer to were merely preliminary measurements to determine the procedure for the NIST beam calibration. The beam calibration was determined from only two consecutive runs followed by water circulation to re-establish temperature equilibrium. This procedure was used for measurements on 77 days, with 32 runs per day. Convection external to the glass cylindrical detector assembly performed a beneficial role. It aided (along with conduction) in increasing the rate of excess heat transported away from the thin cylindrical wall. This decreased the rate of heat conducted toward the axially located thermistors. The other sources of excess heat are the: (1) non-water materials in the temperature probe, and (2) exothermic effect of the once-distilled water external to the cylinder. Finite-element calculations were made to determine the separate and combined effects of the excess heat sources for the afterdrift. From this analysis, extrapolation of the measured afterdrifts of two consecutive runs to mid radiation leads to an estimated over-prediction of no more than about 0.1 %. Experimental measurements contradict the calculated results of Seuntjens et al. that convective motion (a plume) originates from the thermistors operated with an electrical power dissipation as low as 0.6 μW, well below the measured threshold of 50 μW. The method used for detecting a plume was sensitive enough to measure a convective plume (if it had started) down to about the 10 μW power level. Measurements also contradict the NRCC calculations in predicting the behavior of the NIST afterdrifts.  相似文献   

5.
National and international comparisons in Rockwell hardness tests show significant differences. Uncertainties in the geometry of the Rockwell diamond indenters are largely responsible for these differences. By using a stylus instrument, with a series of calibration and check standards, and calibration and uncertainty calculation procedures, we have calibrated the microform geometric parameters of Rockwell diamond indenters. These calibrations are traceable to fundamental standards. The expanded uncertainties (95 % level of confidence) are ±0.3 μm for the least-squares radius; ±0.01° for the cone angle; and ±0.025° for the holder axis alignment calibrations. Under ISO and NIST guidelines for expressing measurement uncertainties, the calibration and uncertainty calculation procedure, error sources, and uncertainty components are described, and the expanded uncertainties are calculated. The instrumentation and calibration procedure also allows the measurement of profile deviation from the least-squares radius and cone flank straightness. The surface roughness and the shape of the spherical tip of the diamond indenter can also be explored and quantified. Our calibration approach makes it possible to quantify the uncertainty, uniformity, and reproducibility of Rockwell diamond indenter microform geometry, as well as to unify the Rockwell hardness standards, through fundamental measurements rather than by performance comparisons.  相似文献   

6.
This report examines the results of the ball plate round robin administered by NIST. The round robin was part of an effort to assess the current state of industry practices for measurements made using coordinate measuring machines. Measurements of a two-dimensional ball plate (240 mm by 240 mm) on 41 coordinate measuring machines were collected and analyzed. Typically, the deviations of the reported X and Y coordinates from the calibrated values were within ± 5 μm, with some coordinate deviations exceeding 20.0 μm. One of the most significant observations from these data was that over 75 % of the participants failed to correctly estimate their measurement error on one or more of the ball plate spheres.  相似文献   

7.
This paper presents the results of a microelectromechanical systems (MEMS) Young’s modulus and step height round robin experiment, completed in April 2009, which compares Young’s modulus and step height measurement results at a number of laboratories. The purpose of the round robin was to provide data for the precision and bias statements of two \ related Semiconductor Equipment and Materials International (SEMI) standard test methods for MEMS. The technical basis for the test methods on Young’s modulus and step height measurements are also provided in this paper.Using the same test method, the goal of the round robin was to assess the repeatability of measurements at one laboratory, by the same operator, with the same equipment, in the shortest practical period of time as well as the reproducibility of measurements with independent data sets from unique combinations of measurement setups and researchers. Both the repeatability and reproducibility measurements were done on random test structures made of the same homogeneous material.The average repeatability Young’s modulus value (as obtained from resonating oxide cantilevers) was 64.2 GPa with 95 % limits of ± 10.3 % and an average combined standard uncertainty value of 3.1 GPa. The average reproducibility Young’s modulus value was 62.8 GPa with 95 % limits of ± 11.0 % and an average combined standard uncertainty value of 3.0 GPa.The average repeatability step height value (for a metal2-over-poly1 step from active area to field oxide) was 0.477 μm with 95 % limits of 7.9 % and an average combined standard uncertainty value of 0.014 μm. The average reproducibility step height value was 0.481 μm with 95 % limits of ± 6.2 % and an average combined standard uncertainty value of 0.014 μm.In summary, this paper demonstrates that a reliable methodology can be used to measure Young’s modulus and step height. Furthermore, a micro and nano technology (MNT) 5-in-1 standard reference material (SRM) can be used by industry to compare their in-house measurements using this methodology with NIST measurements thereby validating their use of the documentary standards.  相似文献   

8.
During the last 10 years, research in light-pipe radiation thermometry has significantly reduced the uncertainties for temperature measurements in semiconductor processing. The National Institute of Standards and Technology (NIST) has improved the calibration of lightpipe radiation thermometers (LPRTs), the characterization procedures for LPRTs, the in situ calibration of LPRTs using thin-film thermocouple (TFTC) test wafers, and the application of model-based corrections to improve LPRT spectral radiance temperatures. Collaboration with industry on implementing techniques and ideas established at NIST has led to improvements in temperature measurements in semiconductor processing. LPRTs have been successfully calibrated at NIST for rapid thermal processing (RTP) applications using a sodium heat-pipe blackbody between 700 °C and 900 °C with an uncertainty of about 0.3 °C (k = 1) traceable to the International Temperature Scale of 1990. Employing appropriate effective emissivity models, LPRTs have been used to determine the wafer temperature in the NIST RTP Test Bed with an uncertainty of 3.5 °C. Using a TFTC wafer for calibration, the LPRT can measure the wafer temperature in the NIST RTP Test Bed with an uncertainty of 2.3 °C. Collaborations with industry in characterizing and calibrating LPRTs will be summarized, and future directions for LPRT research will be discussed.  相似文献   

9.
We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error.  相似文献   

10.
An apparatus has been developed to measure the thermal conductivity of ceramic coatings. Since the method uses an infrared microscope for temperature measurement, coatings as thin as 20 μm can, in principle, be measured using this technique. This steady-state, comparative measurement method uses the known thermal conductivity of the substrate material as the reference material for heat-flow measurement. The experimental method is validated by measuring a plasma-sprayed coating that has been previously measured using an absolute, steady-state measurement method. The new measurement method has a relative standard uncertainty of about 10 %. The measurement of the plasma-sprayed coating gives 0.58 W·m−1·K−l which compares well with the 0.62 W·m−1·K−l measured using the absolute method.  相似文献   

11.
In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φPV (n,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φPV (n,α) = (8.0 ±14(stat) ±2.2(syst)) ×10−7 rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10−7 rad/m.  相似文献   

12.
An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature.  相似文献   

13.
We have developed a measurement system based on a correlation method to characterize the nonlinearity of a detector's response over a large range of laser pulse energy. The system consists of an excimer-laser source, beam-shaping optics, a beam splitter, a monitor detector, a set of optical filters, and the detector under test. Detector nonlinearities as large as 10% or greater over an entire measurement range at an excimer-laser wavelength of 193 nm are observed. The measurement range of the current system is approximately 300 nJ to 50 mJ of laser pulse energy at the detector under test. The typical expanded measurement uncertainty of nonlinearity is 0.6% (k = 2).  相似文献   

14.
For the past ten years, NIST has used high-reflectivity, optical choppers as beamsplitters and attenuators when calibrating the absolute responsivity and response linearity of detectors used with high-power CW lasers. The chopper-based technique has several advantages over the use of wedge-shaped transparent materials (usually crystals) often used as beam splitters in this type of measurement system. We describe the design, operation and calibration of these choppers. A comparison between choppers and transparent wedge beampslitters is also discussed.  相似文献   

15.
High-accuracy transmission measurements at an optical wavelength of 633 nm and mechanical measurements of the thickness of a 13-µm thick silicon-crystal film have been used to calculate the absorption and extinction coefficients of silicon at 633 nm. The results are 3105±62 cm−1 and 0.01564±0.00031, respectively. These results are about 15% less than current handbook data for the same quantities, but are in good agreement with a recent fit to one set of data described in the literature.  相似文献   

16.
A comparison of force measurements performed at the National Institute of Standards and Technology, USA, and at the Physikalisch-Technische Bundesanstalt, Germany is reported. The focus of the study was the intercomparison of the forces realized by the two Institutes rather than the measurement process. The transfer standards used in the comparison consisted of force transducers and associated readout instrumentation. The results of the intercomparison reveal that over a range of 50 kN to 4.5 MN, the forces realized at NIST and at PTB compare favorably. For forces up to 900 kN the agreement is within ±40 ppm; above 900 kN the agreement is within ± 100 ppm.  相似文献   

17.
This report describes the certification of SRM 1962, a NIST Standard Reference Material for particle diameter. It consists of an aqueous suspension of monosize 3 (μm polystyrene spheres. Two calibration techniques were used: optical microscopy and electron microscopy. The first one gave a mean diameter of D¯=2.977±0.011 μm and a standard deviation of the size distribution σD = 0.020 μm, based on measurement of 4600 spheres. The second technique gave D¯=2.990±0.009 μm, based on measurement of 120 spheres. The reported value covering the two results is D¯=2.983 μm with a maximum uncertainly of 0.016 μm, with σD=0.020 μm.  相似文献   

18.
Recent advances in technology on two fronts, 1) the fabrication of large-diameter pistons and cylinders with good geometry, and 2) the ability to measure the dimensions of these components with high accuracy, have allowed dead-weight testers at the National Institute of Standards and Technology (NIST) to generate pressures that approach total relative uncertainties previously obtained only by manometers. This paper describes a 35 mm diameter piston/cylinder assembly (known within NIST as PG-39) that serves as a pressure standard in which both the piston and the cylinder have been accurately dimensioned by Physikalisch Technische Bundesanstalt (PTB). Both artifacts (piston and cylinder) appeared to be round within ±30 nm and straight within ±100 nm over a substantial fraction of their heights. Based on the diameters at 20 °C provided by PTB (±15 nm) and on the good geometry of the artifact, the relative uncertainties for the effective area were estimated to be about 2.2 × 10−6 (1σ).  相似文献   

19.
One important requirement for accurate monitoring of radon in working environments, dwellings, and outdoors is to ensure that the measurement instrumentation is properly calibrated against a recognized standard. To achieve this goal, the U.S. Department of Interior Bureau of Mines (BoM) Radiation Laboratory has participated since 1983 in a program to establish international radon measurement standards. Originally sponsored by the Organization for Economic Cooperation and Development (OECD), the program is also sponsored by the International Atomic Energy Agency. While the National Institute of Standards and Technology (NIST) radium solution ampules are acceptable to all participating laboratories as a primary standard, a method of transferring radon from the NIST source into each laboratory’s primary counting apparatus is a critical problem. The Bureau’s method transfers radon from the primary solution by bubbling 3 L of air through it into a steel cylinder. After homogenizing the radon concentrations in the cylinder, eight alpha-scintillation cells are filled consecutively and measured in a standard counting system. The resulting efficiency is 81.7±1.2%.  相似文献   

20.
A new type of per-fluorinated polymer, “Low Temperature Fomblin,” has been tested as a wall coating in an ultracold neutron (UCN) storage experiment using a gravitational storage system. The data show a UCN reflection loss coefficient η as low as ≈ 5 × 10−6 in the temperature range 105 K to 150 K. We plan to use this oil in a new type of neutron lifetime measurement, where a bellows system (“accordion”) enables to vary the trap size in a wide range while the total surface area and distribution of surface area over height remain constant. These unique characteristics, in combination with application of the scaling technique developed by W. Mampe et al. in 1989, ensure exact linearity for the extrapolation from inverse storage lifetimes to the inverse neutron lifetime. Linearity holds for any energy dependence of loss coefficient µ(E). Using the UCN source at the Institut Laue Langevin we expect to achieve a lifetime precision below ±1 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号