首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is a free radical involved in the regulation of several functions of the male genitourinary system. It is produced by neurons and the endothelium and epithelia of reproductive system; it mediates penile erection and regulates sperm motility, viability, and metabolism. Here we show that human spermatozoa exhibit a detectable NO synthase (NOS) activity, measured both as ability of the intact sperm and cell lysate to convert L-[3H]arginine into L-[3H]citrulline and as 24 h accumulation of extracellular nitrite in intact sperm suspensions. NOS activity (identified as an endothelial isoform) was inhibited by L-canavanine and N(G)-monomethyl-L-arginine, and nitrite accumulation was inhibited by the NO scavenger hemoglobin; both enzyme activity and nitrite production were increased by a 24 h incubation of spermatozoa with protein-enriched extracts of human follicular fluid (PFF); a significant increase of citrulline synthesis was observed only after a 4 h incubation with 40% PFF, a time period during which acrosomal reactivity was significantly increased. PFF-induced acrosomal reaction was inhibited by L-canavanine and hemoglobin, and the NO donors sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), and DETA NONOate were able to increase the percentage of reacted spermatozoa. Our results suggest that NO synthesized by human sperm may play a role in follicular fluid-induced acrosomal reaction.  相似文献   

2.
Glucocorticoids (GC) are known to inhibit the mitogen-induced proliferation of T cells. Some of the effects of GC have been ascribed to the inhibition of nitrogen monoxide (NO) production, since NO is involved in the effecter function of phagocytic cells. Although the effects of GC in vitro on thymocytes are known, the effect of in vivo GC treatment on proliferation and NO synthesis in thymocytes has not been clarified. In this study, we investigated the effects of the administration of hydrocortisone succinate (HC), a potent anti-inflammatory GC, in Sprague-Dawley rats by s.c. injection (100 mg/kg). A substantial reduction of concanavalin A (Con A)-stimulated [3H]thymidine incorporation was observed in the thymocytes from HC-treated rats. This effect was accompanied by an increase in the Con A-stimulated expression of the inducible type of nitric oxide synthase (iNOS) and nitrite accumulation. The constitutive type of NOS (cNOS) in thymocytes did not change during the course of in vivo HC treatment. Addition of NO donors, which stimulated cyclic GMP accumulation, to rat thymocytes in vitro inhibited Con A-stimulated DNA synthesis. Addition of dibutyryl cyclic GMP, a membrane permeable analog, also inhibited DNA synthesis. Co-culture with N(G)monomethyl-L-arginine, an inhibitor of NOS, recovered Con A-stimulated [3H]thymidine incorporation in the thymocytes from HC-treated rats. These findings suggest that NO and cyclic GMP inhibited DNA synthesis in rat thymocytes and that HC treatment in vivo inhibited DNA synthesis via the expression of the iNOS protein, and the accumulation of NO and cyclic GMP. Although it is known that GC regulate iNOS expression negatively in several types of cells in vitro, GC treatment in vivo regulates iNOS protein expression positively in rat thymocytes.  相似文献   

3.
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

4.
The purpose of this study was to determine whether immobilization stress can cause changes in the enzyme activity and gene expression of neuronal nitric oxide synthase (nNOS) in the hypothalamus, pituitary, and adrenal gland in rats. NOS enzyme activity was measured as the rate of [3H]arginine conversion to citrulline, and the level of nNOS mRNA signal was determined using in situ hybridization and image analysis. NOS-positive cells were also visualized using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) histochemistry and by immunohistochemistry using an anti-nNOS antibody. A significant increase of NOS enzyme activity in the anterior pituitary, adrenal cortex, and adrenal medulla (1.5-, 3.5-, and 2.5-fold) was observed in the stressed animals (immobilization of 6 h) as compared to non-stressed control rats. Up-regulation of nNOS mRNA expression in anterior pituitary and adrenal cortex was already detectable after stress for 2 h with 1.5- and 2-fold increase, respectively. The nNOS mRNA signals in hypothalamic paraventricular nucleus (PVN) significantly increased after the stress for 6 h. This increase in NOS enzyme activity was confirmed using NADPH-diaphorase staining and immunostaining in the PVN and adrenal cortex. An increase of NOS enzyme activity in adrenal medulla after immobilization for 6 h posited by far longer than in the adrenal cortex and anterior pituitary. The present findings suggest that psychological and/or physiological stress causes NO release in hypothalamic-pituitary-adrenal (HPA) axis and in sympatho-adrenal system. It is suggested that NO may modulate a stress-induced activation of the HPA axis and the sympatho-adrenal medullary system. The different duration of stress-induced NOS activity in HPA axis and the adrenal medulla may suggest NO synthesis is controlled by separate mechanism in the two HPA and the sympatho-adrenal systems.  相似文献   

5.
Ce(NO3)3对大鼠内脏组织和大脑一氧化氮及合成酶的影响   总被引:1,自引:0,他引:1  
本文研究了硝酸铈对大白鼠内脏组织、大脑及骨骼肌中一氧化氮、一氧化氮合成酶的影响。结果显示 ,腹腔注射高浓度的稀土后 ,大鼠肝脏、心脏、肾脏、骨骼肌中一氧化氮、一氧化氮合成酶的水平明显增加 ,注射低浓度的稀土后 ,肝脏、肾脏内一氧化氮的量显著增加。提示稀土能够广泛影响机体一氧化氮、一氧化氮合酶的水平 ,一氧化氮有可能参与了稀土的中毒过程。  相似文献   

6.
Ischemia-reperfusion (IR) lung injury occurs after various clinical procedures, including cardiopulmonary bypass. It is not clear whether endogenous nitric oxide (NO) is protective or injurious in lungs subjected to IR. Thus, in this study we examined the contribution of endogenous NO to IR injury in isolated, blood-perfused rat lungs. Lungs of male Wistar rats (300 g) were subjected to 30 min ischemia and 180 min reperfusion (I30R180). Lungs were sampled for inducible nitric oxide synthase (i-NOS) mRNA expression (each n = 3) and NOS enzyme activity (each n = 4) at different time points. NOS inhibitors NG-nitro-L-arginine-methyl ester (10[-4] M) and aminoguanidine (10[-4] M) were used to study the contribution of NO to IR injury in lungs subjected to I30R30 and I30R180. The contribution of i-NOS to IR lung injury was studied by inducing i-NOS enzyme with Salmonella lipopolysaccharide, followed by I30R30. We found that ischemia-reperfusion alone can upregulate i-NOS mRNA and i-NOS enzyme activity (p < 0.05, ANOVA), but downregulate constitutive NOS enzyme activity over 180 min reperfusion. Endogenously produced NO is protective against lung injury in I30R180 in normal rats and lung injury in I30R30 in septic rats. NO is also pivotal in maintaining pulmonary vascular homeostasis in septic rat lungs undergoing IR.  相似文献   

7.
1. It has been suggested that a deficiency of nitric oxide (NO) may explain many of the pathophysiological features of pre-eclampsia (PE) and intra-uterine (foetal) growth retardation (IUGR). To elucidate further the role of NO in the pathophysiology of pregnancy we have determined the relative amount and activity of NO synthase (NOS) in first trimester and normal-term placental tissues, as well as in the placenta and umbilical cord in pregnancies complicated by PE and IUGR, using NG-nitro-L-[2,3,4,5(-3)H]-arginine ([3H]-L-NOARG) binding, quantitative in vitro autoradiography, [3H]-arginine to [3H]-citrulline conversion and Western blotting. 2. Specific, high affinity (KD = 38 nM) [3H]-L-NOARG binding was demonstrated in the villous trophoblast of normal-term placentae. Binding was calcium-independent, stereoselective and exhibited a rank order of inhibition by NOS inhibitors and substrate (L-NOARG > or = L-NMMA > or = 7-NI > L-NAME > L-Arg > or = L-NIO > ADMA). 3. [3H]-L-NOARG binding density and NOS activity were both significantly greater in placental tissues from first trimester and PE or IUGR complicated pregnancies compared to normal-term placentae. 4. Western blotting, using an endothelial NOS peptide antiserum, demonstrated a approximately 140 KDa protein band in placental extracts and indicated that the amount of immunoreactive material was significantly greater in first trimester compared to normal-term placentae. 5. Specific [3H]-L-NOARG binding was also localized to the endothelial lining of umbilical arteries and veins, binding density being greater in the artery than the vein. [3H]-L-NOARG binding to the umbilical artery endothelium was significantly lower in PE and IUGR complicated pregnancies compared to normal-term controls. 6. The role of trophoblast-derived NO in human placental pathophysiology remains to be established, but differences in the amount of placental [3H]-L-NOARG binding, NOS activity and immunoreactive material indicate that expression of NOS in the villous trophoblast falls during pregnancy. Conversely, the apparent reduction in NOS in the umbilical artery endothelium in PE and IUGR complicated pregnancies may be indicative of endothelial dysfunction.  相似文献   

8.
1. The ability of 2-amino-4-methylpyridine to inhibit the catalytic activity of the inducible NO synthase (NOS II) enzyme was characterized in vitro and in vivo. 2. In vitro, 2-amino-4-methylpyridine inhibited NOS II activity derived from mouse RAW 264.7 cells with an IC50 of 6 nM. Enzyme kinetic studies indicated that inhibition is competitive with respect to arginine. 2-Amino-4-methylpyridine was less potent on human recombinant NOS II (IC50 = 40 nM) and was still less potent on human recombinant NOS I and NOS III (IC50 = 100 nM). NG-monomethyl-L-arginine (L-NMMA), N6-iminoethyl-L-lysine (L-NIL) and aminoguanidine were much weaker inhibitors of murine NOS II than 2-amino-4-methylpyridine but, unlike 2-amino-4-methylpyridine, retained similar activity on human recombinant NOS II. L-NMMA inhibited all three NOS isoforms with similar potency (IC50S 3-7 microM). In contrast, compared to activity on human recombinant NOS III, L-NIL displayed 10 x selectivity for murine NOS II and 11 x selectivity for human recombinant NOS II while aminoguanidine displayed 7.3 x selectivity for murine NOS II and 3.7 x selectivity for human recombinant NOS II. 3. Mouse RAW 264.7 macrophages produced high levels of nitrite when cultured overnight in the presence of lipopolysaccharide (LPS) and interferon-gamma. Addition of 2-amino-4-methylpyridine at the same time as the LPS and IFN-gamma, dose-dependently reduced the levels of nitrite (IC50 = 1.5 microM) without affecting the induction of NOS II protein. Increasing the extracellular concentration of arginine decreased the potency of 2-amino-4-methylpyridine but at concentrations up to 10 microM, 2-amino-4-methylpyridine did not inhibit the uptake of [3H]-arginine into the cell. Addition of 2-amino-4-methylpyridine after the enzyme was induced also dose-dependently inhibited nitrite production. Together, these data suggest that 2-amino-4-methylpyridine reduces cellular production of NO by competitive inhibition of the catalytic activity of NOS II, in agreement with results obtained from in vitro enzyme kinetic studies. 4. When infused i.v. in conscious unrestrained rats, 2-amino-4-methylpyridine inhibited the rise in plasma nitrate produced in response to intraperitoneal injection of LPS (ID50 = 0.009 mg kg-1 min-1). Larger doses of 2-amino-4-methylpyridine were required to raise mean arterial pressure in untreated conscious rats (ED50 = 0.060 mg kg-1 min-1) indicating 6.9 x selectivity for NOS II over NOS III in vivo. Under the same conditions, L-NMMA was nonselective while L-NIL and aminoguanidine displayed 5.2 x and 8.6 x selectivity respectively. All of these compounds caused significant increases in mean arterial pressure at doses above the ID50 for inhibition of NOS II activity in vivo. 5. 2-Amino-4-methylpyridine also inhibited LPS-induced elevation in plasma nitrate after either subcutaneous (ID50 = 0.3 mg kg-1) or oral (ID50 = 20.8 mg kg-1) administration. 6. These data indicate that 2-amino-4-methylpyridine is a potent inhibitor of NOS II activity in vitro and in vivo with a similar degree of isozyme selectivity to that of L-NIL and aminoguanidine in rodents.  相似文献   

9.
Nitric oxide (NO) modulates the endogenous NO-cGMP pathway. We determined whether prolonged inhaled NO downregulates the NO-cGMP pathway, which may explain clinically observed rebound pulmonary hypertension. Rats were placed in a normoxic (N; 21% O2) or hypoxic (H; 10% O2) environment with and without inhaled NO (20 parts/million) for 1 or 3 wk. Subsequently, nitric oxide synthase (NOS) and soluble guanylate cyclase (GC) activity and endothelial NOS (eNOS) protein levels were measured. Perfusate cGMP levels and endothelium-dependent and -independent vasodilation were determined in isolated lungs. eNOS protein levels and NOS activity were not altered by inhaled NO in N or H rats. GC activity was decreased by 60 +/- 10 and 55 +/- 11% in N and H rats, respectively, after 1 wk of inhaled NO but was not affected after 3 wk. Inhaled NO had no effect on perfusate cGMP in N lungs. Inhaled NO attenuated the increase in cGMP levels caused by 3 wk of H by 57 +/- 11%, but there was no rebound in cGMP after 24 h of recovery. Endothelium-dependent vasodilation was not altered, and endothelium-independent vasodilation was not altered (N) or slightly increased (H, 10 +/- 3%) by prolonged inhaled NO. In conclusion, inhaled NO did not alter the endogenous NO-cGMP pathway as determined by eNOS protein levels, NOS activity, or endothelium-dependent vasodilation under N and H conditions. GC activity was decreased after 1 wk; however, GC activity was not altered by 3 wk of inhaled NO and endothelium-independent vasodilation was not decreased.  相似文献   

10.
BACKGROUND: We recently demonstrated that inhibition of nitric oxide (NO) production ameliorated acute pulmonary allograft rejection. This study examined whether inducible NO synthase (iNOS) was expressed in the transplanted lung during acute rejection. METHODS: With a rat left lung transplant model, tissue from syngeneic (Fischer 344 to Fischer 344) and allogeneic (Brown Norway to Fischer 344) transplants were harvested on postoperative day 4 and analyzed for iNOS mRNA expression (ribonuclease protection assay), iNOS enzyme activity (conversion of L-[3H]-arginine to NO and L-[3H]-citrulline), and serum nitrite/nitrate levels. RESULTS: The iNOS mRNA was expressed in allograft lungs but was not detected in isografts or controls. The iNOS protein was present in allograft lungs, as demonstrated by high levels of L-[3H]-citrulline production compared with minimal iNOS enzyme activity in isograft and control lungs (10.1 +/- 2.4 vs 0.6 +/- 0.2 and 0.7 +/- 0.2 pmol L-[3H]-citrulline.mg-1.min-1, respectively; n = 6, p < 0.001). Allografts had significantly elevated systemic serum nitrite/nitrate levels compared with isografts and controls (38 +/- 6 vs 18 +/- 2 and 16 +/- 1 mumol/L, respectively; n = 6; p < 0.005). CONCLUSIONS: These results, together with our previous demonstration that iNOS inhibition ameliorated lung allograft rejection, suggest that (1) iNOS expression and increased NO production contributed to acute rejection of the transplanted lung, (2) iNOS inhibition may offer an alternative in management of acute lung allograft rejection, and (3) increased NO production, detected by the presence of iNOS mRNA or protein or noninvasively by measuring serum nitrite/nitrate levels, may serve as an early marker of acute allograft rejection.  相似文献   

11.
12.
Effects of 7-min cardiac arrest and individual behavior on free radical-mediated processes and nitric oxide synthase (NOS) activity was evaluated in brains of male Wistar rats one hour and one week after resuscitation. "Emotional resonance" test was used for the behavioral selection of rats. The test includes factors of significance for rats: the choice between large and lighted or small and dark space as well as signals of pain of another rat. Free radical generation (using chemiluminescence method), superoxide scavenging/generating activity, substances reacting with 2-thiobarbituric acid and NOS activity (by measuring mononitrosyl iron complex of NO with diethyl dithiocarbamate and endogenous brain Fe2+ by electron spin resonance spectroscopy) were determined in cerebral cortex, cerebellum and hippocampus. Cardiac arrest induced oxidative stress accompanied by the loss of NOS activity, as well as compensatory changes of free radical-mediated processes in cerebral cortex. Oxidative stress was also evident in cerebellum and, to a lesser extent, in hippocampus. Most of neurochemical differences between behavioral groups were induced by cardiac arrest. These differences were global, related to a specific brain region or became apparent in cerebral lateralization of biochemical indices.  相似文献   

13.
The available data on the role of the L-arginine/nitric oxide (NO) pathway in the genesis of hypertension in spontaneously hypertensive rats (SHR) are limited and contradictory. In an attempt to address this issue, male SHR were studied during the early phase of evolution of hypertension (age 8 to 12 weeks) to distinguish the primary changes of NO metabolism from those caused by advanced hypertension, vasculopathy, and aging late in the course of the disease. A group of age-matched male Wistar-Kyoto rats (WKY) served as controls. The SHR exhibited a marked rise in arterial blood pressure and a significant increase in urinary excretion and plasma concentration of NO metabolites (nitrite/nitrate [NOx]). Likewise, the SHR showed a significant elevation of thoracic aorta NO synthase (NOS) activity coupled with significant increases of kidney, aorta, inducible NOS (iNOS), and endothelial NOS (eNOS) proteins. In an attempt to determine whether the enhanced L-arginine/NO pathway is a consequence of hypertension, studies were repeated using 3-week-old animals before the onset of hypertension. The study revealed significant increases in urinary NOx excretion as well as vascular eNOS and renal iNOS proteins. In conclusion, the L-arginine/NO pathway is upregulated in young SHR both before and after the onset of hypertension. Thus, development of hypertension is not due to a primary impairment of NO production in SHR. On the contrary, NO production is increased in young SHR both before and after the onset of hypertension.  相似文献   

14.
1. Alveolar macrophages (AM phi) exhibit arginase activity and may, in addition, express an inducible form of nitric oxide (NO) synthase (iNOS). Both pathways may compete for the substrate. L-arginine. The present study tested whether two recently described potent inhibitors of liver arginase (N omega-hydroxy-D,L-indospicine and 4-hydroxyamidino-D,L-phenylalanine) might also inhibit arginase in AM phi and whether inhibition of arginase might affect L-arginine utilization by iNOS. 2. AM phi obtained by broncho-alveolar lavage of rat and rabbit isolated lungs were disseminated (2.5 or 3 x 10(6) cells per well) and allowed to adhere for 2 h. Thereafter, they were either used to study [3H]-L-arginine uptake (37 kBq, 0.1 microM, 2 min) or cultured for 20 h in the absence or presence of bacterial lipopolysaccharide (LPS). Cultured AM phi were incubated for 1 h with [3H]-L-arginine (37 kBq, 0.1 microM) and the accumulation of [3H]-L-citrulline (NOS activity) and [3H]-L-ornithine (arginase activity) was determined. 3. During 1 h incubation of rabbit AM phi with [3H]-L-arginine, no [3H]-L-citrulline, but significant amounts of [3H]-L-ornithine (150 d.p.m x 1000) were formed. N omega-hydroxy-D,L-indospicine and 4-hydroxyamidino-D,L-phenylalanine, present during incubation, concentration-dependently reduced [3H]-L-ornithine formation (IC50: 2 and 45 microM, respectively). 4. N omega-hydroxy-D,L-indospicine (up to 100 microM) had no effect on [3H]-L-arginine uptake into rabbit AM phi, whereas 4-hydroxyamidino-D,L-phenylalanine caused a concentration-dependent inhibition (IC50: 300 microM). 5. Rat AM phi, cultured in the absence of LPS, formed significant amounts of [3H]-L-citrulline and [3H]-L-ornithine (133 and 212 d.p.m x 1000, respectively) when incubated for 1 h with [3H]-L-arginine. When AM phi had been cultured in the presence of 0.1 or 1 microgram ml-1 LPS, the formation of [3H]-L-citrulline was enhanced by 37 +/- 8.3 and 99 +/- 12% and that of [3H]-L-ornithine reduced by 21 +/- 8.7 and 70 +/- 2.5%, respectively. 6. In rat AM phi, cultured in the absence or presence of LPS, N omega-hydroxy-D,L-indospicine (10 and 30 microM) greatly reduced formation of [3H]-L-ornithine (by 80-95%) and this was accompanied by increased formation of [3H]-L-citrulline. However, only 20-30% of the [3H]-L-arginine not metabolized to [3H]-L-ornithine after inhibition of arginase was metabolized to [3H]-L-citrulline, when the AM phi had been cultured in the absence of LPS (i.e. low level of iNOS). On the other hand, when the AM phi had been cultured in the presence of LPS (i.e. high level of iNOS), all the [3H]-L-arginine not metabolized by the inhibited arginase was metabolized to [3H]-L-citrulline. 7. In conclusion, N omega-hydroxy-D,L-indospicine is a potent and specific inhibitor of arginase in AM phi. In cells in which, in addition to arginase, iNOS is expressed, inhibition of arginase can cause a shift of L-arginine metabolism to the NOS pathway. However, the extent of this shift appears to depend in a complex manner on the level of iNOS.  相似文献   

15.
In a recent study, we found marked increases in nitric oxide (NO) production and endothelial and inducible NO synthase (eNOS and iNOS) expressions with calcium channel blockade in rats with chronic renal failure. This study was undertaken to determine whether enhanced NO production with calcium channel blockade is a direct effect of this therapy or a consequence of the associated hemodynamic and humoral changes. We tested the effects of a calcium channel blocker, felodipine (10(-5), 10(-6), and 10(-7) mol/L), on nitrate and nitrite (NOx) generation, Ca2+-dependent and -independent NOS activity, and eNOS and iNOS protein masses in proliferating and quiescent rat aortic endothelial cells in culture. Compared with vehicle alone, felodipine significantly increased NOx generation, Ca2+-dependent NOS activity, and eNOS protein mass in proliferating and quiescent endothelial cells. Felodipine did not modify the stimulatory action of 10% fetal calf serum on DNA synthesis (thymidine incorporation) and cell proliferation. Ca2+-independent NOS activity and iNOS protein expression were negligible and unaffected by calcium channel blockade. NOx production and NOS expression were greater in proliferating cells than in quiescent cells. Thus, calcium channel blockade upregulates endothelial NO production in vitro, confirming our previous in vivo study. This observation indicates that the reductions in cytosolic [Ca2+] and vasodilation with calcium channel blockade are not only due to inhibition of Ca2+ entry but also to an NO-cGMP mediated mechanism.  相似文献   

16.
We investigated age-related changes in excitatory amino acid transport sites and FK506 binding protein (FKBP) in 3-week-, and 6-, 12-, 18- and 24-month-old Fischer 344 rat brains using receptor autoradiography. Sodium-dependent D-[3H]aspartate and [3H]FK506 were used to label excitatory amino acid transport sites and immunophilin (FKBP), respectively. In immature rats (3-week-old), sodium-dependent D-[3H]aspartate binding was lower in the frontal cortex, parietal cortex, striatum, nucleus accumbens, whole hippocampus, thalamus and cerebellum as compared to adult animals (6-month-old), whereas [3H]FK506 binding was significantly lower in only the hippocampus, thalamus and cerebellum. 3[H]FK506 binding exhibited no significant change in the brain regions examined during aging. However, sodium-dependent D-[3H]aspartate binding showed a conspicuous reduction in the substantia nigra in 18-month-old rats. Thereafter, a significant reduction in sodium-dependent D-[3H]aspartate binding was found in the thalamus, substantia nigra and cerebellum in 24-month-old rats. Other regions also showed about 10-25% reduction in sodium-dependent D-[3H]aspartate binding. The results indicate that excitatory amino acid transport sites are more susceptible to aging process than immunophilin. Further, our findings demonstrate the conspicuous differences in the developmental pattern between excitatory amino acid transport sites and immunophilin in immature rat brain.  相似文献   

17.
The long-term effects of portacaval anastomosis (PCA) on histamine H3 receptors in rat brain were studied by in vitro and in vivo methods. The overflow of histamine from the anterior hypothalamus and from cortex after long-term PCA was determined by in vivo microdialysis. The binding properties of [3H]-R-alpha-methylhistamine in membranes from cortex, cerebellum, and rest of brain (ROB) were examined with saturation binding experiments. The regional distribution of [3H]-R-alpha-methylhistamine binding sites in the brain of sham- and PCA-operated rats was assessed also with autoradiography. The tissue levels of histamine were significantly elevated in cortex and ROB of PCA-operated rats. In addition, the spontaneous and K+-evoked overflow of histamine from anterior hypothalamus, and the thioperamide-induced overflow from both anterior hypothalamus and cortex were increased after chronic PCA. In spite of the significantly elevated tissue concentrations and the moderate increase in histamine release, the binding properties of [3HI-R-alpha-methylhistamine to cortical membranes were not significantly changed. However, the autoradiography study did reveal a decrease in [3H]-R-alpha-methylhistamine binding density, particularly in striatum and cortex, where H3 receptors are located mainly at non-histaminergic neurons. In conclusion, we suggest that there is a region-selective increase in the histaminergic activity in chronic PCA, which leads to the down-regulation of somadendritic and pre-synaptic H3 receptors located at non-histaminergic neurons. At the same time, the autoreceptor mediated control of histamine neuronal activity via pre-synaptic H3 receptors located at histaminergic neurons is preserved after long-term PCA.  相似文献   

18.
1. We studied the effect of ketotifen, a second generation H1-receptor antagonist on nitric oxide synthase (NOS) activity in colonic mucosa and in renal tissues, and on rat renal haemodynamics in vivo. 2. Ketotifen (100 micrograms ml-1) increased human colonic NOS activity from 3.7 +/- 0.6 to 14.5 +/- 1.3 nmol g-1 min-1 (P < 0.005, ANOVA). In rat renal cortical and medullary tissues ketotifen increased NOS activity by 55% and 86%, respectively (P < 0.001). The stimulation of NOS activity was attenuated by NADPH deletion and by the addition of N omega nitro-L-arginine methyl ester (L-NAME) or aminoguanidine, but not by [Ca2+] deprivation. NOS activity was unaffected by two other H1-antagonists, diphenhydramine and astemizole, or by the structurally related cyproheptadine. Renal cortical NOS activity was also significantly stimulated 90 min after intravenous administration of ketotifen to anaesthetized rats. 3. Ketotifen administration to anaesthetized rats induced modest declines in blood pressure and reduced total renal, cortical and outer medullary vascular resistance. This is in contrast to diphenhydramine, which did not induce renal vasodilatation. 4. We conclude that ketotifen stimulates NOS activity by mechanisms other than H1-receptor antagonism. The association of this effect with therapeutic characteristics of ketotifen and the clinical implications of these findings are yet to be defined.  相似文献   

19.
1. The temporal changes in constitutive NO-synthase (cNOS) and in calcium-independent NO-synthase activities were studied in mice subjected to 2 h of transient focal cerebral ischaemia. The changes in brain nitrites/nitrates (NOx) content were also studied. 2. NOS activities were measured by the conversion of L-[14C]-arginine to L-[14C]-citrulline. Brain NOx contents were investigated by the Griess colourimetric method. 3. cNOS activity in the infarcted cortical area was significantly reduced after 6 h of reperfusion and this activity remained attenuated for up to 10 days after ischaemia. A calcium-independent NOS activity began to increase 48 h after reperfusion, reached a maximum at 7 days and returned to baseline at 10 days. 4. There was a significant increase of brain NOx content beginning after 3 days of reperfusion. This increase was maximal at 7 days and returned to baseline at 10 days. 5. Thus, ischaemia followed by recirculation leads to a rapid, prolonged drop in cNOS activity in the infarcted cortex. There is also a substantial appearance of calcium-independent NOS activity in the later phase of transient ischaemia, leading to an important increase of NOx production.  相似文献   

20.
The activity and protein expression of endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) were investigated during the development of hypertension in spontaneously hypertensive rats (SHR). SHR and Wistar-Kyoto rats (WKY) were studied at three different ages: 4, 14 to 17, and 63 weeks of age. After treatment with saline or lipopolysaccharide (LPS, 10 mg/kg IV) for 3 hours, the aortas were removed for measurement of NOS activity and protein expression assay by [3H]-L-citrulline formation method and Western blot analysis, respectively. Plasma levels of nitrite/nitrate (NO2-/NO3-) and tumor necrosis factor-alpha (TNF-alpha) were also determined. At 14 to 17 weeks and 63 weeks, the basal activity and protein expression of eNOS in the aortas were significantly lower in SHR than in WKY. In addition, the aged WKY exhibited lower eNOS activity than that of adult WKY, but this change was not seen in SHR. By comparison, the basal activity and protein expression of iNOS were only observed in SHR of the 14-to-17-week group and in the 63-week group; SHR still exhibited higher activities, and these differences were further exaggerated by treatment with LPS. The basal and LPS-induced NO2-/NO3- and TNF-alpha levels in the plasma were also higher in the SHR except the 4-week group. After treatment with quinapril, the basal and LPS-induced expressions of iNOS in SHR were significantly attenuated. Our results demonstrated that alterations of activity and protein expression of eNOS and iNOS occurred in SHR. In addition, aging may reduce the activity of eNOS in WKY but not in SHR. The decline of eNOS activity and/or expression may contribute to the development of hypertension, whereas the increase of iNOS expression may be a consequence of the pathological state of vessels associated with hypertension in SHR. However, the augmented expression of iNOS in SHR was attenuated by antihypertensive therapy, suggesting that the abnormal expression of iNOS is associated with hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号