首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructural details of fourteen Mg–Al–Sr alloys were investigated in the as-cast form by a combination of scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis and quantitative electron probe microanalysis (EPMA). The heat transfer method coupled with the DSC measurement has been utilized to determine the solidification curves of the alloys. The morphology and the chemical composition of the phases were characterized. The microstructure of the alloys is primarily dominated by (Mg) and (Al4Sr). In the present investigation, ternary solid solubility of three binary compounds extended into the ternary system has been reported and denoted as: (Al4Sr), (Mg17Sr2) and (Mg38Sr9). The (Al4Sr) phase is a substitutional solid solution represented by MgxAl4–xSr and has a plate-like structure. The maximum solubility of Al in Mg17Sr2 was found to be 21.3 at%. It was also observed that Mg38Sr9 dissolved 12.5 at% Al.  相似文献   

2.
A new ternary compound, Mg15  xZnxSr3 with extensive solid solubility in the Mg–Zn–Sr system was observed and studied using electron probe microanalysis (EPMA), scanning electron microscopy SEM, and X-ray techniques. The solid solubility limits of this compound were found to be Mg15  xZnxSr3 (0.24  x  10.58, at.%) at 300 °C using a diffusion couple and several equilibrated alloys. Analysis of the X-ray diffraction (XRD) patterns was carried out by Rietveld method. XRD data has shown that this solid solution crystallizes in the hexagonal P63/mmc (194) space group with the Ni11Si4Sc3 prototype. The lattice parameters decrease linearly with decreasing Mg content indicating substitutional solid solubility. The fractional atomic occupancy of the 6h, 6g, 4f, 2b and 12k sites of this compound are function of Mg content.  相似文献   

3.
Second phases in the AZ31 as-cast magnesium alloys with different Sr contents (0, 0.1, 0.5, 1.0, 2.0, and 5.0 wt%) were investigated using scanning electron microscopy, energy dispersive spectrometry, differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy. The results indicated that the Mg21(Zn, Al)17 phase with small amount was formed in the AZ31 as-cast alloy without Sr addition, in addition to the Mg17Al12 phase. At the same time, the alloy with the addition of 0.1 wt% Sr mainly consisted of the α-Mg, Mg17Al12, Mg21(Zn, Al)17, and Al4Sr phases. In addition, the α-Mg, Mg21(Zn, Al)17 and Al4Sr phases were found to be the main second phases for the alloy with the addition of 0.5 wt% Sr. However, only the α-Mg, Al4Sr and (Mg, Al)17Sr2 phases were mainly formed in the AZ31 alloy with the addition of 1.0 wt% Sr. As for the alloys with the additions of 2 and 5 wt% Sr, their as-cast microstructures were mainly composed of the α-Mg and (Mg, Al)17Sr2 phases.  相似文献   

4.
The effect of composition on the structural stability of Ca4Al3Mg has been studied. It was found that the Ca4Al3Mg structure stabilizes in a narrow composition range. In the Ca4Al4−xMgx alloys, the single Ca4Al3Mg phase exists in an approximate composition range from x = 0.8 to 1.2. Further decreasing x to 0.5, the alloy contains two phases Ca4Al3Mg and Ca13Al14. Increasing x to 1.5, however, the alloy consists of Ca4Al3Mg, CaMg2 and Ca. The effect of temperature on the structural stability of Ca4Al3Mg under hydrogen atmosphere has also been investigated. The ternary compound Ca4Al3Mg can react with hydrogen to form CaH2 and Al starting at about 373 K. The Mg atoms dissolve in CaH2 and Al after the hydrogen-induced decomposition of Ca4Al3Mg.  相似文献   

5.
In this study, we report the surface phonon polariton (SPP) characteristics of wurtzite structure aluminium indium nitride (AlxIn1 − xN) ternary alloys over the whole Al composition range. An anisotropic model is used to simulate the surface polariton (SP) dispersion curves of the AlxIn1 − xN ternary alloys. The characteristics of these dispersion curves are discussed in detail and the effects of the composition dependence of the AlxIn1 − xN on the SPs are illustrated and explained. Moreover, the relevant experimental information from the attenuated total reflection (ATR) method is also presented, namely, the corresponding ATR spectra are simulated based on the standard matrix formulation. Through this study, it has been found that the SPP mode of the wurtzite AlxIn1 − xN exhibits mixed-mode behaviour.  相似文献   

6.
The mechanism and hydrogen absorption/desorption properties of LiAlH4 + xMgH2 (where x = 1, 2.5, and 4) composites have been investigated. With the combination of MgH2 and LiAlH4 by mechanical grinding, initial decomposition temperatures of the mixtures can be reduced by about 50 °C. Mechanical grinding treatment makes MgH2 react with LiAlH4 to release a certain amount of hydrogen. The final resultants of the composites after thermal decomposition contain Al12Mg17. Intermetallic Al12Mg17 hydrogenated into Al2Mg3, MgH2 and Al firstly, intermediate Al2Mg3 then transforms into MgH2 and Al in the subsequent hydriding process. Hydrogenation of intermediate Al2Mg3 is supposed to occur synchronously to that of Al12Mg17, therefore demarcation of the two hydrogenation processes is ambiguous. Al12Mg17 can be totally recovered by complete dehydriding. Formation of Al12Mg17 alters the reaction pathway of LiAlH4 + xMgH2 (where x = 1, 2.5, and 4) systems and improves their thermodynamic properties. The dehydrogenation process of LiAlH4 + xMgH2 (x = 1, 2.5, and 4) composites contain two stages, their maximum desorption capacity reaches 7.46 wt.%.  相似文献   

7.
The increasing use of magnesium castings for automotive components and the number of newly developed alloys raise the question of suitable recycling processes. Remelting offers a high potential of energy saving and thereby improves the live cycle balance of magnesium components. Effective recycling processes are likely to involve the mixing of different alloys but little is known about the interaction of alloying elements. In order to approach this issue, the influence of strontium, silicon and calcium on phase formation and mechanical properties of magnesium alloy AM50 has been investigated. After strontium addition, X-ray diffraction demonstrated the formation of the Al4Sr and the Mg17Sr2 phases. However, after simultaneous alloying with strontium, silicon and calcium the ternary Zintl phase Sr6.33Mg16.67Si13 was detected. This phase forms preferably instead of Al4Sr, Mg17Sr2 and Mg2Si. Compared to the two strontium-containing phases, precipitates of the ternary Zintl phase exhibit a rather compact morphology. This results in a higher elongation-at-fracture under tensile stress.  相似文献   

8.
Mixtures of elemental aluminium and magnesium powders corresponding to Al70Mg30 and Al50Mg50 compositions have been mechanically alloyed. After milling, an extended solid solubility of magnesium in aluminium upto 18 at% in the case of Al70Mg30 and 45 at% for Al50Mg50 was observed. These materials typically nanostructural (grain size 2–10 nm) transform into equilibrium structure upon heating. The stability of these materials was investigated using thermal analysis.  相似文献   

9.
The investigation has dealt with the structure and magnetic properties of rapidly solidified and annealed Fe73·5???x Si13·5B9Nb3Cu1Al x (x?=?0, 2, 4, 6 at%) ribbons prepared by melt spinning. Complete amorphous structure was obtained in as-spun ribbons of x?=?0 and 2 at% compositions, whereas structure of ribbons containing higher Al was found to be partially crystalline. Detailed thermal analyses of the alloys and the melt spun ribbons revealed that the glass forming ability in the form of ${{ \textit{T}}}_{\mathbf{x}}{/}{{ \textit{T}}}_{\mathbf{l}}$ (ratio between crystallization and liquidus temperature) is the highest for 2 at% Al alloys and decreases with further addition of Al. Annealing of all as spun ribbons resulted in the precipitation of nanocrystalline phase embedded in amorphous matrix in the form of either ${ \textit{DO}}_{{ 3}}$ phase or bcc ${\upalpha}$ -Fe(Si/Al) solid solution depending on the initial composition of the alloy. Only bcc ${\upalpha}$ -Fe(Si/Al) solid solution was formed in 2 at% Al ribbons whereas ordered DO3 structure was found to be stabilized in other ribbons including 0 at% Al. A detailed study on determination of precision lattice parameter of nanocrystalline phase revealed that the lattice parameter increases with the addition of Al indicating the partitioning behaviour of Al in nanocrystalline phase.  相似文献   

10.
Bing Yan  Junjie Wu 《Materials Letters》2007,61(26):4851-4853
CaxSr1 − xAl2O4: Eu2+ photoluminescent materials with high brightness and long afterglow were in situ synthesized by hybrid precursor assembly sol-gel technology in a reductive atmosphere. The particle size of luminescent materials is in the range of 30-60 nm by the estimation of XRD. And SEM shows that there exists uniform morphology and microstructure owing to the hybrid precursors. The influence of co-doping Ca2+ and Sr2+ on the luminescence of the phosphor was studied. Their excitation and emission spectra were very similar to that of SrAl2O4: Eu2+ phosphors and all of them have long afterglow phenomenon. Changing the co-doping concentrations of Ca2+ and Sr2+ in CaxSr1 − xAl2O4: Eu2+ phosphors, the luminescent intensities are different. When the proportion of Ca and Sr is 6 to 4, the phosphor reaches the strongest emitting intensity.  相似文献   

11.
The microstructure of binary Al100−x –Mg x (x = 10, 15, 18 and 25 wt%) alloys after long anneals (600–4000 h) was studied between 210 and 440 °C. The transition from incomplete to complete wetting of Al/Al grain boundaries (GBs) by the second solid phase Al3Mg2 has been observed. The portion of completely wetted GBs increases with increasing temperature beginning from T wsmin = 220 °C. Above T wsmax = 410 °C all Al/Al GBs are completely wetted by the Al3Mg2 phase.  相似文献   

12.
A series of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+ phosphors were synthesized by the sol–gel process and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and photoluminescence (PL) excitation and emission spectra. The experiment results revealed that the highest intensity of Sr(Al1.98, B0.02)O4:Eu2+ phosphor with pure monoclinic SrAl2O4 was achieved by annealing at the temperature of 1200 °C and the Eu2+ content of 8 mol%. However, when the post-treatment temperature for Sr(Al1.98, B0.02)O4: Eu2+ was over 1200 °C, the Sr4Al14O25 phase appeared as a minor phase, inducing small blue-shift in the emission peak (520–509 nm). Doping higher content of B3+ (y = 0.02–0.40) into SrAl2O4:Eu2+ at 1200 °C resulted in the transformation of phase from SrAl2O4 to Sr4Al14O25 as well as to SrB2Al2O7, which made the emission intensity enhance and the emission shift to a much shorter wavelength region (λp = 467 nm). It was found that, instead of purely using Sr atoms, Ca atoms with content of 20–40% could induce the crystal structure of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+, which led to SrAl2O4 from monoclinic to hexagonal phase. As a result, SrAl2O4 solid solution was obtained and then SrAl2O4:Eu2+ to emit 518 nm green light. At higher Ca content (z > 40%), a new CaAl2O4 solid solution was formed and a blue emission of CaAl2O4:Eu2+ was obtained.  相似文献   

13.
MgAl2O4 spinel exhibits fascinating microwave dielectric properties, but the synthesis of dense MgAl2O4 ceramics requires high firing temperatures. In this study, Co is introduced into MgAl2O4 ceramics to improve their sinterability and microwave dielectric properties. An Mg1−xCoxAl2O4 solid solution of a spinel structure was observed in the MgAl2O4–CoAl2O4 system, and dense Mg1−xCoxAl2O4 ceramics were obtained by sintering at 1475–1500 °C in air for 2–6 h. Co addition is effective in lowering the sintering temperature to 1475 °C. Q × f of Mg1−xCoxAl2O4 ceramics was increased to 49,300 GHz with an increase in Co content to 0.2, but degraded with a further increase in Co content. The temperature coefficient of resonant frequency of Mg1−xCoxAl2O4 ceramics was sustained at between −73 and −23 ppm/°C to the variation of Co content.  相似文献   

14.
Three Al–6Si–3Cu–xMg alloys (x = 0.59, 3.80 and 6.78 wt.%) were produced using melt-spinning. As-melt-spun ribbons were aged at 150, 180 and 210 °C for times between 0.05 and 100 h. Microstructural changes were examined using transmission electron microscopy (TEM) and microhardness was measured. TEM analysis of the as-melt-spun alloys revealed 5 nm nanoparticles and larger particles (50 nm) composed of Al2Cu (θ) for the 0.59% Mg alloy and Al5Cu2Mg8Si6 (Q) for 3.80% and 6.78% Mg alloys. Silicon solid solubility was extended to 9.0 at.% and Mg in solid solution reached 6.7 at.%. After aging treatments the 6.78% Mg alloy exhibited the most significant increase in microhardness, reaching 260 kg/mm2. TEM analysis of aged specimens also showed θ and Q phase (5–20 nm nanoparticles and 35–40 nm particles). The combination of the volume fraction and size of the particles plays an important role in microhardness variation.  相似文献   

15.
In order to clarify the phase components and further improve the glass-forming ability of Gd55Co15Al30 alloy, substitution of Al with Si was adopted. Although the X-ray powder diffraction experiment indicated an amorphous structure of the Gd55Co15Al30−xSix (x = 1, 2, 3) alloys, precipitation of crystalline Gd2Al phase was evident from the energy-dispersive spectroscopy, selected-area diffraction, and magnetization measurements. The magnetocaloric effect of Si substituted alloys is lower than that of Gd52.5Co16.5Al31 alloy with a similar composition and full amorphous structure, which is ascribed to the presence of antiferromagnetic Gd2Al phase whose magnetic entropy change is lower.  相似文献   

16.
Single-crystalline layers of GaN and related alloys such as AlGaN and InGaN were grown on Al2O3 (0001) substrates by radio-frequency magnetron sputter epitaxy. The crystalline structures of these layers were studied as functions of substrate temperature, N2 composition ratio in N2/Ar mixture source gas and gas pressure during the growth. Surface structure of GaN layer depended on Ga/N ratio in flux density, and nitrogen-rich growth condition resulted in pyramid-type facet structure whereas Ga-rich growth produced flat surface. The crystalline quality of GaN layer improved at relatively low N2 composition ratios, and the GaN layer grown at 30% N2 condition was transparent and colorless. AlxGa1−xN layers with x = 0.06-0.08 and InxGa1−xN layers with x = 0.45-0.5, were obtained at 30-40% and 30-50% N2 composition ratios, respectively. The AlN and InN molar fractions in these layers were considerably different from Al and In molar fractions in starting metal alloys (x = 0.15 in both AlxGa1−x and InxGa1−x alloys).  相似文献   

17.
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca–Mg–Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15−x (4.6 ⩽ x ⩽ 12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca–Mg–Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca–Mg–Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.  相似文献   

18.
The solubility of Ba(NO3)2 and Sr(NO3)2 crystals in aqueous solution from 25 to 65 °C has been determined by both an optical interferometer and a weight technique. A Mach-Zehnder interferometer was used for measuring the concentration distribution of Ba(NO3)2 and Sr(NO3)2 near the solid/liquid interface during crystal growth and dissolution. A fringe carrier technique was introduced to visualize more clearly the boundary layer and to solve the concentration distribution. Crystals were successfully grown with sizes larger than  mm by a temperature cooling method. The BaxSr1−x(NO3)2 crystal was also nucleated and grown. The Raman spectra of BaxSr1−x(NO3)2 indicate that the barium ions probably degrade the properties of Sr(NO3)2.  相似文献   

19.
The solid solutions in the system of Pb and Sr hydroxyapatite, Sr10−xPbxHAp (x = 0-10), were successfully synthesized by high-temperature mixing method (HTMM) at 160 °C for 12 h under hydrothermal conditions. The samples were characterized by X-ray diffraction, chemical analysis and electron microscopic observation, and the site of the metal ions in the solid solutions was analyzed with the Rietveld method. The lattice constants, both a and c, of the solid solutions varied linearly with Pb content. It was found that Pb ions in the solid solutions preferentially occupied the M(2) site in the apatite structure. HTMM gives Sr-Pb HAp solid solutions much better crystallization. However, due to the formation of intermediate compound of Pb3O2(OH)2 in the Pb(NO3)2·4H2O solution before mixing with (NH4)2HPO4 solution at 160 °C, HTMM causes the decrease of crystallization of the samples with high Pb content.  相似文献   

20.
(La1−xTix)0.67Mg0.33Ni2.75Co0.25 (x = 0, 0.05, 0.10, 0.15 and 0.20, at%) alloys are synthesized by arc-melting and subsequent heat solid-liquid diffusing techniques, and the crystalline structures and electrochemical properties of the alloys are investigated systematically. The structural analysis results show that all the alloys mainly consist of (La, Mg)Ni3 phase with the rhombohedral PuNi3-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. However, when the Ti content is higher than 0.10, a little amount of TiNi3 phase start to form. Electrochemical measurements show that the alloy electrodes could be activated to their maximum discharge capacity within four cycles, the maximum discharge capacity is around 321.9-384.6 mAh g−1, both the cyclic stability and the high-rate discharge ability first increased and then decrease with increasing x. All the results show that a little amount of Ti substitution for La in AB3-type hydrogen storage alloys is effective to the improvement of the overall electrochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号