首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Ergonomics》2012,55(8):690-699
Subjective experiments involving 12 different conditions were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal sensation and thermal comfort. The experimental conditions involved various combinations of the operative temperature in the test room (10 or 20°C), a heated seat (on/off) and a foot heater (room operative temperature +10 or +20°C). The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. The room operative temperature at which the occupants felt a ‘neutral’ overall thermal sensation was decreased by about 3°C by using the heated seat or foot heater and by about 6°C when both devices were used. Moreover, the effects of these devices on vehicle heater energy consumption were investigated using simulations. As a result, it was revealed that heated seats and foot heaters can reduce the total heater energy consumption of vehicles.

Statement of Relevance: Subjective experiments were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal comfort. The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. These devices can reduce the total heater energy consumption in vehicles.  相似文献   

2.
Eight subjects participated in a subjective experiment of eight conditions to investigate the effects of heated seats in vehicles on skin temperature, thermal sensation and thermal comfort during the initial warm-up period. The experimental conditions were designed as a combination of air temperature in the test room (5, 10, 15, or 20 °C) and heated seat (on/off). The heated seat was effective for improving thermal comfort during the initial warm-up period when air temperature was lower than 15 °C. Use of heated seats prevented decreases in or increased toe skin temperature. Heated seats also increased foot thermal sensation at 15 and 20 °C. Optimal thermal sensation in contact with the seat was higher when air temperature was lower. Optimal skin temperature in contact with the seat back was higher than that with the seat cushion. Moreover, these optimal skin temperatures were higher when air temperature was lower.  相似文献   

3.
J E Brooks  K C Parsons 《Ergonomics》1999,42(5):661-673
This report presents the results of an ergonomics investigation into human thermal comfort using an automobile seat heated with an encapsulated carbonized fabric (ECF). Subjective and objective thermal comfort data were recorded while participants sat for 90 min in a heated and a non-heated automobile seat in an environmental chamber. Eight male participants each completed eight experimental sessions in a balanced order repeated measures experimental design. The conditions in the chamber were representative of a range of cool vehicle thermal environments (5, 10, 15 and 20 degrees C; in the 20 degrees C trial participants sat beside a 5 degrees C 'cold wall'). Participants in the heated seat condition used the heating controller with separate temperature control over the back of the seat (squab) and bottom of the seat (cushion) in an effort to maintain their thermal comfort while wearing the provided clothing, which had an estimated insulation value of 0.9 Clo. The trials showed that participants' overall sensations remained higher than 'slightly cool' in the heated seat at all temperatures. Participants' overall discomfort remained lower (i.e. more comfortable) than 'slightly uncomfortable' at temperatures ranging down to nearly 5 degrees C in the heated seat. Hand and foot comfort, sensation and temperature were similar in both seats. Asymmetric torso and thigh skin temperatures were higher in the heated seat although no significant discomfort was found in the front and back of the torso and thigh in either seat. Participants reported no significant difference in alertness between the control and heated seat.  相似文献   

4.
In order to mitigate the comfort problems during a vehicle warm-up, the vehicles propelled by high-efficiency engines are increasingly equipped with auxiliary heaters. Although the usage of an auxiliary heater improves engine efficiency during warm-up, a higher total fuel consumption results in general. In this paper, an optimal, model-based feedback control law for the optimal operation of a fuel-fired heater with respect to passenger comfort and fuel economy is derived. To this end, a control-oriented mathematical model of the system is established, calibrated, and validated. Based on this model, an optimal control problem is formulated and solved. In simulation studies, the functionality of the resulting optimal controller is demonstrated, and its superiority to the state-of-the-art control laws is assessed.  相似文献   

5.
This paper presents an evaluation of thermal comfort in an extended road trial study. Automobile seats play an important role in improving the thermal comfort. In the assessment of thermal comfort in autos, in general subjective and objective measurements are used. Testing on the road is very difficult but real traffic conditions affect the comfort level directly, as well as the driver's experience to real conditions. Thus, for such cases real traffic situations should not be neglected in the evaluation of comfort. The aim of this study was to carry out, on an extended road trial study, an evaluation of thermal comfort using human subjects. In the experiments used, the 100% polyester seat cover had three different cover materials, which were velvet, jacquard and micro fiber. All experiments were carried out on a sunny day with ten participants over 1h. They were carried out at air temperatures of 25 degrees C in a Fiat Marea 2004, which had an automatic climate function. Skin temperature at eight points and skin wettedness at two points on the human body were measured during the trials. Participants were required to complete a questionnaire of 15 questions, every 5 min. It can be concluded that there was negligible difference in participants' reported thermal sensation between the three seats. According to objective measurement results, all seat cover materials have the same degree of thermal comfort. On the road the participants feel warmer around their waist than any other area of the body. It was suggested that the effects of real traffic conditions must be accounted for in comfort predictions.  相似文献   

6.
《Ergonomics》2012,55(4):586-600
In 11 climate chamber experiments at air temperatures ranging from 15 to 45°C, a total of 24 subjects, dressed in appropriate clothing for entering a vehicle at these temperatures, were each exposed to four different seat temperatures, ranging from cool to warm. In one simulated summer series, subjects were preconditioned to be too hot, while in other series they were preconditioned to be thermally neutral. They reported their thermal sensations, overall thermal acceptability and comfort on visual analogue scales at regular intervals. Instantaneous heat flow to the seat was measured continuously. At each ambient room temperature, the percentage dissatisfied was found to be a second-order polynomial function of local heat flow. Zero heat flow was preferred at an air temperature of 22°C and the heat flow that minimized the percentage dissatisfied was found to be a single linear function of air temperature in all conditions. The analysis indicates that providing optimal seat temperature would extend the conventional 80% acceptable range of air temperature for drivers and passengers in vehicle cabins by 9.3°C downwards and by 6.4°C upwards.  相似文献   

7.
Zhang YF  Wyon DP  Fang L  Melikov AK 《Ergonomics》2007,50(4):586-600
In 11 climate chamber experiments at air temperatures ranging from 15 to 45 degrees C, a total of 24 subjects, dressed in appropriate clothing for entering a vehicle at these temperatures, were each exposed to four different seat temperatures, ranging from cool to warm. In one simulated summer series, subjects were preconditioned to be too hot, while in other series they were preconditioned to be thermally neutral. They reported their thermal sensations, overall thermal acceptability and comfort on visual analogue scales at regular intervals. Instantaneous heat flow to the seat was measured continuously. At each ambient room temperature, the percentage dissatisfied was found to be a second-order polynomial function of local heat flow. Zero heat flow was preferred at an air temperature of 22 degrees C and the heat flow that minimized the percentage dissatisfied was found to be a single linear function of air temperature in all conditions. The analysis indicates that providing optimal seat temperature would extend the conventional 80% acceptable range of air temperature for drivers and passengers in vehicle cabins by 9.3 degrees C downwards and by 6.4 degrees C upwards.  相似文献   

8.
为了保证井口输油管道中原油的流动性,针对传统的电加热器和水套炉存在的热效率低、功耗大、不稳定及废气对环境造成污染等问题,提出了一套以太阳能集热器为主、热泵热水器为辅的加热系统。该系统采用温度采集卡实现10路温度信号及6路开关量信号的采集,利用三星的S3C2410 ARM控制器对太阳能集热器和热泵进行交替控制,从而实现储油罐原油的加热控制。触摸屏采用3.5英寸的TFT液晶屏,并将WINCE操作系统移植到ARM处理器,从而实现了良好的人机交互控制界面。  相似文献   

9.
Several subjective rating schemes were investigated to determine which might be the most effective for use in designing and evaluating car seats, and what relationships exist among these schemes. Participants (n=27) completed short-term driving sessions, in six combinations of seats (from vehicles ranked high and low on overall comfort), vehicle class (sedan and SUV), and driving venue (lab-based and field). Overall ratings were obtained, as well as separate measures of comfort and discomfort of the whole body and local body parts. No association was found between subjective ratings and a publicly available overall vehicle comfort score (J.D. Power and Associates’ Comfort Score), implying that other factors besides sitting comfort/discomfort (and car seats) account for overall vehicle comfort. Other major results were that contemporary car seats appear to best accommodate those of middle stature, that packages/seats of sedans were preferred over those of SUVs, that separate processes appeared to be involved in determining whole body comfort and discomfort, and that ratings of comfort were most effective at differentiating among the car seats. Finally, a scheme for the use of subjective ratings was suggested: discomfort ratings for ensuring basic seat requirements (pain prevention-oriented) and comfort ratings for promoting advanced seat requirements (pleasure promotion-oriented).

Relevance to industry

Evidence regarding the advantages and disadvantages of different subjective rating schemes can facilitate future design and evaluation of automotive seats.  相似文献   


10.
Hodder S  Parsons K 《Ergonomics》2008,51(4):476-491
When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.  相似文献   

11.
This study determined the influence of different cover and cushion materials on the thermal comfort of aeroplane seats. Different materials as well as ready made seats were investigated by the physiological laboratory test methods Skin Model and seat comfort tester. Additionally, seat trials with human test subjects were performed in a climatic chamber. Results show that a fabric cover produces a considerably higher sweat transport than leather. A three-dimensional knitted spacer fabric turns out to be the better cushion alternative in comparison to a moulded foam pad. Results from the physiological laboratory test methods nicely correspond to the seat trials with human test subjects.  相似文献   

12.
In recent years, comfort seat design has received widespread attention from researchers. One of the factors that could contribute to comfort is the thermal influence due to the interaction between the human and the seating surface, for which literature is limited.In this paper, a laboratory experimental setup was used to detect and analyse the temperature changes at interface between seated subjects and a sensorized automotive seat. Acquired temperatures were processed in order to identify a mathematical model for describing the temperature changes at the interface.The main target of the study was the identification of the most sensitive areas of the human body to temperature variation while seated and its effect on local and overall perceived thermal comfort.Statistical analysis showed that the effects of temperature were most perceived in the “Upper Body” (UB) and less in the “Lower Body” (LB). The shoulders, the sides of the back, the back and the buttocks were most sensitive to temperature changes at the interface. Differences have been highlighted also between male and female subjects.Relevance to industryThe identification of the most sensitive areas of the human body to temperature variation, while seated, and the identification of the logarithmic model for describing the temperature changes should allow seat designers to define targets and strategies in developing cooling and heating systems for car seats, taking into account, in a preventive evaluation, the most probable perceived thermal comfort.  相似文献   

13.
Pressure at the driver–seat interface has been used as an objective method to assess seat design, yet existing evidence regarding its efficacy is mixed. The current study examined associations between three subjective ratings (overall, comfort, and discomfort) and 36 measures describing driver–seat interface pressure, and identified pressure level, contact area, and ratio (local to global) variables that could be effectively used to improve subjective responses. Each of 27 participants was involved in six separate driving sessions which included combinations of two seats (from vehicles ranked high and low on overall comfort), two vehicle classes (sedan and SUV), and two driving venues (lab-based and field). Several pressure variables were identified as more effective for assessing sitting comfort and discomfort across a range of individual statures. Based on the results, specific approaches are recommended to improve the sitting experience: (1) lower pressure ratios at the buttocks and higher pressure ratios at the upper and lower back; and (2) balanced pressure between the bilateral buttocks, and between the lower and upper body. Finally, separate analyses supported that human–seat interface pressure was more strongly related with overall and comfort ratings than with discomfort ratings.

Relevance to industry

Several interface pressure variables were identified that showed associations with subjective responses during sitting. Use of these measures is suggested to improve the quality of car seats.  相似文献   


14.
《Ergonomics》2012,55(6):616-628
The effects of environmental and individual factors on thermal sensation in air-conditioned office environments were analysed for two large, fully compatible thermal comfort field studies in contrasting Australian climates. In the hot—humid location of Townsville, 836 office workers were surveyed; 935 workers participated in hot—arid Kalgoorlie-Boulder. Overall perceived work area temperature and measured indoor operative temperature correlated moderately with thermal sensation for Townsville (T) subjects but only perceived temperature correlated with Kalgoorlie-Boulder (KB) sensation. Multiple regression analyses confirmed that indoor climatic variables (including Predicted Mean Vote) contributed to actual thermal sensation vote (24% T; 15% KB), with operative temperature having more of an effect in T than in KB. Subsequent analyses of individual characteristics showed no linear contributions to thermal sensation. The remaining variances were significantly related to perceived work area temperature (7% additional explained variance in T; 12% in KB). Mann Whitney analyses (after correction for climatic variables) showed that T subjects with higher job satisfaction had thermal sensations closer to ‘neutral’. Males, healthier subjects, non-smokers, respondents with earlier survey times and underweight occupants had lower median thermal sensations in KB. Townsville occupants appeared more adapted to their outdoor climatic conditions than Kalgoorlie-Boulder respondents, perhaps due to limited home air-conditioning. Further research into non-thermal impacts on gender-related thermal acceptability is suggested.  相似文献   

15.
The effects of environmental and individual factors on thermal sensation in air-conditioned office environments were analysed for two large, fully compatible thermal comfort field studies in contrasting Australian climates. In the hot - humid location of Townsville, 836 office workers were surveyed; 935 workers participated in hot - arid Kalgoorlie-Boulder. Overall perceived work area temperature and measured indoor operative temperature correlated moderately with thermal sensation for Townsville (T) subjects but only perceived temperature correlated with Kalgoorlie-Boulder (KB) sensation. Multiple regression analyses confirmed that indoor climatic variables (including Predicted Mean Vote) contributed to actual thermal sensation vote (24% T; 15% KB), with operative temperature having more of an effect in T than in KB. Subsequent analyses of individual characteristics showed no linear contributions to thermal sensation. The remaining variances were significantly related to perceived work area temperature (7% additional explained variance in T; 12% in KB). Mann - Whitney analyses (after correction for climatic variables) showed that T subjects with higher job satisfaction had thermal sensations closer to 'neutral'. Males, healthier subjects, non-smokers, respondents with earlier survey times and underweight occupants had lower median thermal sensations in KB. Townsville occupants appeared more adapted to their outdoor climatic conditions than Kalgoorlie-Boulder respondents, perhaps due to limited home air-conditioning. Further research into non-thermal impacts on gender-related thermal acceptability is suggested.  相似文献   

16.
We have fabricated microthruster chip pairs—one chip with microthruster structures such as injection capillaries, combustion chamber and converging/diverging nozzle machined using the deep reactive ion etching process, the other chip with sputtered platinum (Pt) thin film devices such as resistance temperature detectors (RTDs) and a heater. To our knowledge, this is the first microelectromechanical systems-based microthruster with fully integrated temperature sensors. The effects of anneal up to 1,050°C on the surface morphology of Pt thin films with varied geometry as well as with/without PECVD-SiO2 coating were investigated in air and N2 and results will also be presented. It was observed that by reducing the lateral scale of thin films the morphology change can be suppressed and their adhesion on the substrate can be enhanced. Chemical analysis with X-ray photoelectron spectroscopy showed that no diffusion took place between neighboring layers during annealing up to 1?h at 1,050°C in air. Electrical characterization of sensors was carried out between room temperature and 1,000°C with a ramp of ±5?Kmin?1 in air and N2. In N2, the temperature-resistance characteristics of sensors had stabilized to a large extent after the first heating. After stabilization the sensors underwent up to eight further temperature cycles. The maximum drift of the sensor signal was observed for temperatures above 950°C and was less than 8.5?K in N2. To reduce the loss of combustion heat, chip material around microthruster structures was partially removed with laser ablation. The effects of thermal insulation were investigated with microthruster chip pairs which were clamped together mechanically. The heater was operated with up to 20?W and the temperature distribution in the chip pairs with/without thermal insulation was monitored with seven integrated RTDs. The experiments showed that a thermal insulation allows the maximum temperature as well as the temperature gradient within the microthruster chip pairs to be increased.  相似文献   

17.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

18.
With the advent of future vehicles, passengers expect to travel in comfort, and the free leg space between facing-seats could be an issue due to the unsuitability for all people, according to their anthropometric variability. A previous investigation survey showed the need to increase the leg-space between facing seats and, if installed, to improve the surface of the table placed in between. So, four different distances between seat-pans front edges of facing seats have been set-up and tested (44 cm, 51 cm, 58 cm, 65 cm) with a table in between. 13 couples of participants with different heights took part to experiments. The aim was to investigate the relationship between facing-seat distances and passenger wellbeing in terms of postural comfort and social interaction. Postural comfort has been analysed through optical tracking (for postural angles overtime) and questionnaires (perceived comfort). Social interaction feelings have been investigated with questionnaires. Experiment results showed the suitable distance could be 51 cm keeping the same table surface; otherwise, the 65 cm one could be ideal changing the table surface.Relevance to industryWith the advent of autonomous driving, vehicle manufacturers and designers are working hard to define new paradigms of public transportation in terms of seat layout, passenger wellbeing and interiors’ design. This paper contributes to increasing the general knowledge on the effects of distance between facing seats on postural comfort and social interaction.  相似文献   

19.
Thermo transfer type MEMS (Micro Electro Mechanical System) based micro flow sensing device have promising potential to solve the limitation of implantable arterial blood flow rate monitoring. The present paper emphasizes on modeling and simulation of MEMS based micro flow sensing device, which will be capable of implantable arterial blood flow rate measurement. It describes the basic design and model architecture of thermal type micro flow sensor. A pair of thin film micro heaters is designed through MEMS micro machining process and simulated using CoventorWare; a finite element based numerical code. A rectangular cross section micro channel has been modeled where in micro heater and thermal sensors are embedded using the same CoventorWare tools. Some promising and interesting results of thermal dissipation depending upon very small amount of flow rate through the micro channel are investigated. It is observed that measuring the variation of temperature difference between downstream and upstream, the variation of fluid flow rate in the micro channel can be measured. The numerical simulation results also shows that the temperature distribution profile of the heated surface depends upon microfluidic flow rate i.e. convective heat transfer is directly proportional to the microfluidic flow rate on the surface of the insulating membrane. The simplified analytical model of the thermo transfer type flow sensor is presented and verified by simulation results, which are very promising for application in arterial blood flow rate measuring in implantable micro devices for continuous monitoring of cardiac output.  相似文献   

20.
Transparency sheets, coated with copper on both sides by means of thermal evaporation in vacuum, are patterned by direct chemical etching to realize sensing platforms having copper heaters on the backside, and resistances having calibrated temperature coefficient on the topside. The mechanical and thermal stability of these structures was demonstrated up to 70 °C. Bending tests also show that the metallic patterns do maintain unaltered performances after more than 104 bending cycles. Resistance measurements show that the resistance on the patterned copper structures linearly increases with the temperature in the range between room temperature and 70 °C, while above this temperature an irreversible damage occurs. Experimental investigations demonstrate that the heaters on the backside of the sensing platforms allow to obtain a quite uniform temperature distribution on the top side over an area larger than 1 cm2.Coating the flexible sensing platform by doped polyaniline and carbon nanotubes embedded in a polymer host, a chemoresistive system operating at low temperature is developed, which allows to perform tests at constant temperature, with the temperature being set and monitored by using the heater and the patterned resistance, respectively. The sensing performances of the films are evaluated by means of electrical measurements performed while exposing the samples to different relative humidity levels, and to calibrate ammonia pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号