首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用溶胶-凝胶法、固相法、共沉淀法制备La_(0.7)Sr_(0.3)Fe_(0.7)Co_(0.2)Cu_(0.1)O_(3-δ)(LSFCC)阴极材料,通过热重-差热分析(TG-DTA)、热膨胀系数(TEC)、X射线衍射(XRD)、扫描电镜(SEM)、直流四探针法对材料的结构与性能进行研究。XRD结果表明:不同方法制备的LSFCC均为单一的钙钛矿结构,并且与电解质SDC在煅烧的过程中未发生反应,具有良好的化学稳定性。溶胶-凝胶法制备的阴极粉体粒径最小、颗粒大小均匀、结晶度高。在空气气氛下采用流四电极法测试了阴极材料LSFCC的电导率,研究结果表明:在测试温度400~800℃条件下,溶胶-凝胶法与共沉淀法合成阴极材料LSFCC的导电机制为小极化子导电理论,而固相法制得的LSFCC电导率随着测试温度的升高先增大后减小,表现出类金属导电机理。最大电导率为溶胶-凝胶法制得的LSFCC,在800℃达到了691.71 S/cm。热膨胀系数研究表明:不同方法制备的LSFCC阴极样品与电解质SDC相匹配。  相似文献   

2.
分别采用凝胶浇注法和甘氨酸–硝酸盐法制备La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)粉体与Sm0.2Ce0.8O1.9(SDC)粉体,随后制备出不同比例的LSCF–SDC复合阴极。用X射线衍射分析粉体的化学稳定性,用扫描电子显微镜观察复合阴极的微观结构,在500~800℃范围内测量其热膨胀系数和电导率。采用丝网印刷法将LSCF–SDC涂覆在SDC电解质片上,在1100℃烧结4h。用交流阻抗法在600~800℃范围内测量不同成分的LSCF–SDC复合阴极和SDC电解质的交流阻抗谱。结果表明:LSCF和SDC粉体具有良好的化学相容性,烧结体具有多孔结构,LSCF–SDC复合阴极与SDC电解质可形成良好的接触界面。SDC的加入在降低阴极材料的热膨胀系数的同时还保持了其本身较高的电导率,在中温范围内,电导率达到500S/cm以上。复合阴极的极化电阻随着SDC的含量增加而减小,当SDC含量为30%时,复合阴极的极化电阻最小,在700℃空气中测试得到的界面电阻为0.32Ω·cm2。  相似文献   

3.
分别采用机械混合法和一步溶胶-凝胶法制备摩尔比为1:1的Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)-BaCe_(0.8)Sm_(0.2)O_(2.9)(BCS)复合电解质,研究了不同制备方法对复合电解质SDC-BCS的显微结构以及电化学性能的影响。结果表明:相比于机械混合法,一步溶胶-凝胶法制得的复合电解质中的SDC和BCS两相的分布更加均匀;且与单相电解质SDC相比,复合电解质中SDC和BCS的相界能够为质子和氧离子提供传输通道,有利于晶界电导率的提高。另外,一步溶胶-凝胶法制备的复合电解质制作的单电池,具有较高的开路电压和最大功率密度,在700℃时分别达到0.914 V和0.281 W/cm~2。  相似文献   

4.
采用甘氨酸-硝酸盐法(GNP)合成SmBaCo2O5+δ(SBCO)阴极材料和Ce0.8Sm0.2O1.9(SDC)电解质材料,制备不同比例的SBCO-SDC复合阴极,考察SDC含量对复合阴极的热膨胀、电导率和电化学性能的影响。结果表明,SBCO与SDC在1100℃混合煅烧未发生明显的化学反应,两者之间具有良好的化学相容性。SDC的加入可有效改善复合阴极的热膨胀性能,随着SDC含量的增加,SBCO-SDC复合阴极的热膨胀系数(TEC)逐渐减小,同时其电导率也逐渐下降。此外,SDC的加入导致SBCO-SDC复合阴极界面电阻(ASR)增加。当SDC含量为20%时,750℃测试的ASR为0.145Ω.cm2,500~800℃范围内电导率大于100 S.cm-1,满足IT-SOFC阴极材料的要求。  相似文献   

5.
采用溶胶-凝胶法合成中低温固体氧化物燃料电池(IT-SOFC)阴极材料La_(1.5)Ba_(0.1)Sr_(0.4)CoMO_(5+δ)(M为Co、Cu、Fe、Ni)(LBSCM),通过X射线衍射(XRD)、热膨胀系数(TEC)测试、扫描电镜(FESEM)、直流四电极法对材料的微观结构及电性能进行研究。XRD分析结果表明,溶胶-凝胶法制备的LBSCM均为双钙钛矿结构,阴极粉体颗粒大小较均匀、致密度较高。利用直流四电极法测试了阴极材料LBSCM的电导率,结果表明,在测试温度400~800℃下,LBSCM(M=Fe)导电机制符合小极化子导电理论,而LBSCM(M为Co、Cu、CuFe)电导率随着测试温度的升高逐渐减小,表现为类金属导电机理,其中电导率最大的是LBSCM(M=Co),在400℃达到了1 204 S/cm。热膨胀系数研究结果表明,掺杂Cu、Fe、Ni的LBSCM阴极材料热膨胀系数均明显降低。  相似文献   

6.
以三氧化二钐、浓硝酸、硝酸铈铵、柠檬酸为原料,采用溶胶-凝胶法低温(900℃)制备Ce_(0.8)Sm_(0.2)O_(2-α)(SDC),低于通常高温烧结温度(1400℃),并与(Li/K)_2CO_3共熔体进行复合。采用DSC-TGA确定制备Ce_(0.8)Sm_(0.2)O_(2-α)的烧结温度。XRD结果表明,(Li/K)_2CO_3与Ce_(0.8)Sm_(0.2)O_(2-α)复合后没有发生化学反应。SEM图像表明,SDC粒径均匀一致,(Li/K)_2CO_3作为SDC颗粒黏结剂均匀覆盖SDC颗粒表面。采用电化学工作站研究了复合电解质在400~600℃下干燥氮气气氛中的电导率。结果表明,温度为600℃时,复合电解质在干燥氮气气氛中的电导率达到最大值3.3×10~(-2)S/cm,高于单一二氧化铈材料在相同条件下的电导率。氧分压与电导率关系曲线表明,复合电解质具有良好的氧离子导电性。H_2/O_2燃料电池性能测试表明复合电解质Ce_(0.8)Sm_(0.2)O_(2-α)-(Li/K)_2CO_3(SDC-SG-LK)在600℃开路条件下的电解质阻抗、极化阻抗分别为3.13W·cm~2、0.81W·cm~2,最大输出功率密度为130m W/cm~2。  相似文献   

7.
固体氧化物燃料电池铈基电解质的制备与表征   总被引:1,自引:0,他引:1  
本文采用溶胶-凝胶低温燃烧合成法制备了SDC电解质材料,以热重差热仪检测了粉末的处理情况;并用X射线衍射仪(XRD)对产物的微观结构进行了表征,采用四端子法检测了不同组成电解质片的电导率值。结果表明电解质片的电导率值随着温度升高呈上升的趋势。且在500℃-800℃时Ce0.8Sm 0.16Gd0.04O 1.9的电导率值为0.017-0.102S/cm,适宜作为中低温固体氧化物燃料电池的电解质材料。  相似文献   

8.
利用溶胶-凝胶法制备了Sm掺杂CaWO_4电解质粉体Ca_(1-x)Sm_xWO_(4+δ)。通过X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗谱(EIS)等手段对其结构、形貌和电性能进行了测试。结果表明采用溶胶凝胶法经900 ℃煅烧后成功制备出了具有白钨矿结构的复合Ca_(1-x)Sm_xWO_(4+δ)粉末,所得的粉体具有良好的烧结活性,经1250 ℃烧结后得到的电解质陶瓷具有较好的离子导电率。800 ℃时Ca_(0.8)Sm_(0.2)WO_(4+δ)的电导率约为1.15×10~(-3)S·cm~(-1),在固体氧化物燃料电池电解质材料中有潜在应用价值。  相似文献   

9.
采用甘氨酸-硝酸盐法(glycine-nitrate process,GNP)合成中温固体氧化物燃料电池(intermediate temperature solid oxide fuel cell,IT-SOFC)的阴极材料SmBaCo2O5+δ(SBCO)。利用X射线衍射仪和扫描电镜对材料的化学稳定性和微观结构进行表征。结果表明:SBCO与电解质Sm0.2Ce0.8O1.9(SDC)的化学相容性良好,电极在1050℃焙烧5h后,SBCO与SDC之间接触良好。SBCO的电导率在500~800℃达到1231~763S/cm。以SDC为电解质,阴极材料SBCO在750℃时的极化电阻为0.073?·cm2。在800℃条件下,当阴极过电位为49mV时,SBCO阴极的电流密度达到172.14mA/cm2,可作为IT-SOFC较为理想的阴极材料。  相似文献   

10.
采用柠檬酸自蔓延燃烧法合成了Sr0.95Ti0.05Co0.95O3-δ(STC)阴极粉体和Sm0.2Ce0.8O1.9(SDC)电解质粉体,将STC与SDC粉体按质量比7:3混合得到复合阴极。通过X射线衍射(XRD)、直流四端子法和热膨胀仪表征了样品的化学相容性、电导率和热膨胀系数。XRD表明,STC在900℃能够得到立方纯钙钛矿结构,复合阴极STC-SDC在工作温度区间内具有很好的化学相容性;在650℃空气气氛下STC-SDC与SDC之间的界面极化阻抗仅为0.05Ω·cm2。制备了阳极支持型(Ni O-SDC│SDC│STC-SDC)单电池,在450~650℃范围内以湿润的H2(3%水蒸汽)为燃料气,空气为氧化剂测试了单电池的性能。结果表明:阳极支撑的单电池共烧1 350℃可以得到致密的电解质层和多孔的电极,而且650℃时单电池开路电压0.82V,最大输出功率为721 m W/cm2。结果预示,在以SDC为电解质的中低温固体氧化物燃料电池(IT-SOFC)中,STC-SDC是一个很有前途的复合阴极材料。  相似文献   

11.
采用溶胶-凝胶法制备出Ce0.8Y0.2-x Cax O2-δ(0.02≤x≤0.10)系列电解质材料。通过红外、热重、X射线衍射、扫描电子显微镜、透射电子显微镜、交流阻抗和热膨胀系数测试对试样进行分析。结果表明:采用溶胶-凝胶法经600℃煅烧所得粉体形成了单相立方萤石结构,平均晶粒尺寸在5~10nm之间;Ce0.8Y0.2-x Cax O2-δ超细粉体具有较高的烧结活性,在1 400℃烧结得到的Ce0.8Y0.2-x Cax O2-δ系列电解质陶瓷的相对密度均大于96%。在该系列材料中,Ce0.8Y0.1Ca0.1O1.85具有良好的离子导电率、较低的电导活化能和适中的热膨胀性能。它在800℃时的离子电导率为0.041S/cm,电导活化能为0.81eV,热膨胀系数为13.5×10-6 K-1(常温~800℃)。  相似文献   

12.
王军  季必发  何远飞 《广东化工》2014,(10):213-214,200
文章以Ce0.8Y0.15M0.05O2-δ(M=Fe、Co、Mg)为主要研究对象。通过红外、致密度分析、X射线衍射、扫描电镜、交流阻抗、热膨胀等测试方法对试样进行测试和分析,对实验得到的电解质粉及相应的电解质材料的性能进行表征。实验结果表明:溶胶-凝胶法经700℃煅烧成功制备出了单相立方萤石结构的超细粉末,具有良好的烧结活性。1300℃下烧结后相对密度达到97%以上。电导率的测试表明,电解质材料在中温范围有较高的电导率,其中,Ce0.8Y0.15Mg0.05O1.9在800℃时,电导率达到了0.0661 S/cm。  相似文献   

13.
采用溶胶-凝胶法分别制备出PrBa_(0.85)Ca_(0.15)CoMO_(5+δ)(M=Co,Fe,Mn,Ni,Cu)阴极材料,通过X射线衍射(XRD)、扫描电镜(SEM)、直流四探针法、热膨胀系数(TEC)测试的手段对样品进行了表征。结果表明:溶胶-凝胶法制备的PBCCM(M=Co,Fe,Mn,Ni,Cu)均为双钙钛矿结构,阴极粉体颗粒小而且分布均匀。在温度400—800℃的测试条件下,PBCCM(M=Co,Cu,Fe)的电导率随着温度的升高而减小,表现出类金属导电机理。掺杂Cu的阴极材料的电导率在400℃最大达到451 S/cm。Mn,Ni,Cu元素的掺杂都能明显地降低PBCCM系阴极材料的热膨胀系数。  相似文献   

14.
用柠檬酸络合法制备超细的钙钛矿型结构的固体氧化物燃料电池阴极材料La_(0.7)Sr_(0.2)Co_(0.1)CuO_(3-σ)(LSCC).选用合适的反应条件和煅烧温度制得所需要的材料后,用DSC-TG、XRD、SEM等对粉体进行物相测定和形貌观察;选用不同温度煅烧前驱体,得到不同比表面积的粉体材料,通过半干法工艺成型LSCC阴极材料并测试它在不同温度条件下的电性能.结果表明,溶胶凝胶-高温自燃烧法能制备出超细纯相的LSCC阴极材料,且该阴极材料在中温条件下使用具有良好的导电性能(不低于150 S/cm)和输出功率(0.85 W/cm~2)和较低的活化能(112.1 kJ/mol).  相似文献   

15.
通过溶胶凝胶法制备了Y、Gd共同掺杂的CeO2粉末(Ce0.8Y0.1 Gd0.1O1.9,CYG).并将制得的粉末经1400℃下高温烧结4h得到相应的CYG电解质烧结体.对CYG粉末及烧结体进行了相应的性能测试.实验结果表明:用溶胶凝胶法成功制备出了纳米CYG粉末,所得CYG粉末具有良好的烧结活性,1400℃下烧结所得电解质材料烧结体的相对密度达到95.8%.电导率的测试表明,CYG电解质烧结体在中温范围有较高的电导率,800℃时,其电导率达到了0.084S·cm-1.  相似文献   

16.
用溶胶–凝胶法合成了无Co的双钙钛矿SmBaFeNiO5+δ(SBFN)阴极材料,并引入Sm0.2Ce0.8O1.9 (SDC)电解质材料制备复合阴极,降低热膨胀系数和优化性能。研究表明:SBFN在30~900℃的平均热膨胀系数为14.1×10-6 K-1,SBFN–SDC15 (质量比为85:15)复合阴极的平均热膨胀系数降为12.0×10-6 K-1。SBFN在425℃时电导率具有最大值,为48 S/cm。700℃时SBFN|SDC|SBFN对称电池的界面极化阻抗(Rp)为0.386Ω·cm2。在SBFN中引入SDC可以改善其电化学性能,SBFN–SDC10 (质量比为90:10)复合阴极具有最低的Rp,为0.224Ω·cm2。800℃时,以SBFN和SBFN–SDC10为阴极的单电池,最大功率密度分别为367.6 m W/cm2和507.8 m W/cm2。  相似文献   

17.
采用溶胶 -凝胶法与低温燃烧法相结合 ,合成了 (CeO2 ) 0 .9-x(GdO1 .5 ) x(Sm2 O3) 0 .1 系列粉体 .结果表明 :由硝酸盐与柠檬酸混合形成的凝胶 ,可在较低温度 (2 0 0~ 3 0 0℃ )点火并燃烧 ,其火焰温度达 90 0℃以上 .经TEM ,XRD测试 ,燃烧后即直接形成了粒径为 2 0~ 3 0nm ,具有萤石结构的单相粉体 ,由该粉体制备的固体电解质在中温下电导率为 5 .8× 10 - 2 S/cm ,组装的单个H2 -O2 燃料电池最大功率密度达 70mW /cm  相似文献   

18.
以硝酸镧、钼酸铵、硫酸锰为原料,以柠檬酸为络合剂,采用溶胶-凝胶法合成了可作为中温固体氧化物燃料电池(SOFCs)使用的电解质材料La_2Mo_(2-x)Mn_xO_(9-δ)(x=0、0.05、0.10、0.15、0.20),通过红外光谱(FTIR)、热分析(TGDSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗(AC)测试等手段对样品进行了表征。研究表明,干凝胶经700℃煅烧2 h后得到了纯相的高烧结活性的La_2Mo_(2-x)Mn_xO_(9-δ)(x=0、0.05、0.10、0.15、0.20)粉体,其在950℃烧结2h即可获得相对密度大于97%的烧结体。电化学性能研究表明Mn掺杂可以有效的提高La_2Mo_2O_9电解质材料的电导率,其中La_2Mo_(1.9)Mn_(0.1)O_(8.9)在800℃时电导率高达0.028 S/cm。  相似文献   

19.
采用EDTA-甘氨酸法制备了SmBaCo_(2-x)Cu_xO_(5+δ)(SBCC_x,x=0,0.5,1.0,1.5,2.0)阴极材料,研究不同Cu掺杂量对SBCC_x材料的晶体结构、热膨胀系数、电导率及电化学性能的影响。结果表明,在SmBaCo_2O_(5+δ)阴极材料的Co位掺入Cu,材料的晶胞体积逐渐变大,热膨胀系数将随着Cu的加入而逐渐降低,与Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)电解质热匹配性良好。以SBCC1.0为阴极,SDC为电解质,N-SDC为阳极支撑的单电池在750℃时输出功率达到346 mW·cm~2,这得益于SBCC1.0在750℃时电导率值为133S·cm~1和较小的极化电阻0.154Ω·cm~2。  相似文献   

20.
采用溶胶-凝胶法制备了电解质材料La1.9Ba0.1Mo1.9 Al0.1O8.8(LBMA),通过热重-差示扫描量热分析(TG-DSC)、X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)和电化学阻抗谱(EIS)等方法对样品进行测试研究.研究表明干凝胶经700℃煅烧处理即可得到立方相氧化物LBMA,煅烧后的粉体为分散性较好的球形纳米颗粒,平均粒径约为35 nm.SEM分析和致密度研究表明溶胶-凝胶法制备的粉体具有良好的烧结性能,在1100℃烧结2h能得到相对密度高于98%的致密的陶瓷烧结体.电化学性能研究表明LBMA具有较高的离子电导率,1100℃烧结的LBMA电解质在800℃时电导率达到17.87 mS/cm,电导活化能为1.22 eV,其有望应用于中低温固体氧化物燃料电池.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号