首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
测定金刚石框架锯锯切切削力,金刚石结块磨损和锯条变形等是十分重要也是非常困难的。在前面对锯切运动,锯切机理,锯切切削力和金刚石结块磨损研究的基础上,介绍了一种在实验室里用小型框架锯切实验机模拟框架锯锯切过程的实验方法,比较了用单锯条三节块和单锯条单结块锯切石材的实验结果,优选了结块分布间距,与金刚石框架锯锯切加工实验结果的比较表明,在实验机上用单锯条三节块锯切石材时,测量得到的处于中间的金刚石结块的切削性能,可以较好地反映实际加工中金刚石结块的切削状态,利用这一结果,可快速地通过简单的实验,评价金刚石锯条在实际加工中的切削力和金刚石结块磨损特性,其误差在20%以内。  相似文献   

2.
在对金刚石框架锯锯切加工动力学,锯切破碎机理模型和金刚石框架锯锯切加工石材时的切削力研究的基础上,通过金刚石锯条锯切石材的实验,测量并分析了金刚石结块磨损特征及其分类,金刚石结块磨损机理,金刚石结块磨损与加工时间,进给速度,石材种类,金刚石结块性能和锯条张紧力等因素的关系,提出了加工参数和金刚石结块的优选原则,研究结果为系统开发和改进金刚石工具提供了一个良好的基础,基于 这些结果,可改进结合剂,金刚石质量,金刚石浓度,金刚石粒度,结块尺寸和结块间隔。  相似文献   

3.
金刚石框架锯锯切研究(Ⅳ)--金刚石框架锯锯切力   总被引:5,自引:5,他引:0  
在对金刚石框架锯锯切加工动力学和锯切破碎机理模型的研究基础上,通过金刚石锯条切削石材的实验,测量并分析了金刚石框架锯锯切加工石材时的切削力特征以及切削力与进给速度,石材种类,金刚石结块性能,金刚石结块分布距离等因素的关系,提供了几种石材的切削力值,可供设计金刚石框架锯锯机时参考使用。  相似文献   

4.
金刚石框架锯锯切研究(V)--金刚石结块磨损特征   总被引:8,自引:8,他引:0  
在对金刚石框架锯锯切加工动力学、锯切破碎机理模型和金刚石框架锯锯切加工石材时的切削力研究的基础上,通过金刚石锯条锯切石材的实验,测量并分析了金刚石结块磨损特征及其分类、金刚石结块磨损机理、金刚石结块磨损与加工时间、进给速度、石材种类、金刚石结块性能和锯条张紧力等因素的关系,提出了加工参数和金刚石结块的优选原则.研究结果为系统开发和改进金刚石工具提供了一个良好的基础,基于这些结果,可改进结合剂、金刚石质量、金刚石浓度、金刚石粒度、结块尺寸和结块间隔.  相似文献   

5.
计算机模拟了在框架锯锯切过程中石材和锯片的接触面积和有效切削刃数、单个金刚石颗粒、金刚石结块和整个金刚石锯条的切削力。结果表明:在结块表面上出刃的金刚石颗粒中,只有半数金刚石颗粒在一个固定的切削区间内切削石材。金刚石在不同位置切削产生的断裂沟槽交错,形成了锯切沟槽的底部,切削力的试验结果与实际切削试验结果在数量级和变化趋势上是一致的。切削进给量和金刚石结块的切削性能是影响切削力和结块磨损的主要因素。石材和锯条结块间的最佳接触面积取决于结块间距、结块数目、结块尺寸,以及石材的长度与锯条有效切削长度之比等因素。  相似文献   

6.
基于框架锯锯切加工运动学分析、单颗粒和单结块切削力试验结果,讨论了采用计算机模拟框架锯锯切过程中所需的运动学、金刚石结块磨损和金刚石颗粒切削力模型,以及模拟过程图。采用简化方法计算了金刚石结块表面的理论金刚石颗粒数;结合对金刚石结块磨损的研究结果,用Monto Carlo方法生成了结块表面的金刚石颗粒的出刃高度、分布位置和磨损形态,生成了数字化的金刚石锯条,为计算机模拟框架锯锯切加工过程,提供了基础数据。  相似文献   

7.
基于框架锯锯切加工运动学分析、单颗粒和单结块切削力试验结果 ,讨论了采用计算机模拟框架锯锯切过程中所需的运动学、金刚石结块磨损和金刚石颗粒切削力模型 ,以及模拟过程图。采用简化方法计算了金刚石结块表面的理论金刚石颗粒数 ;结合对金刚石结块磨损的研究结果 ,用MontoCarlo方法生成了结块表面的金刚石颗粒的出刃高度、分布位置和磨损形态 ,生成了数字化的金刚石锯条 ,为计算机模拟框架锯锯切加工过程 ,提供了基础数据。  相似文献   

8.
基于框架锯锯切加工运动学分析、单颗粒和单结块切削力试验结果,讨论了采用计算机模拟框架锯锯切过程中所需的运动学、金刚石结块磨损和金刚石颗粒切削力模型,以及模拟过程图.采用简化方法计算了金刚石结块表面的理论金刚石颗粒数;结合对金刚石结块磨损的研究结果,用Monto Carlo方法生成了结块表面的金刚石颗粒的出刃高度、分布位置和磨损形态,生成了数字化的金刚石锯条,为计算机模拟框架锯锯切加工过程,提供了基础数据.  相似文献   

9.
介绍了几种金刚石框架锯的性能参数,综述了影响金刚石框架锯锯切的主要因素,以及锯切加工工艺,包括:金刚石锯条的张紧,预调,安装,锯切参数等。为正确使用金刚石框架锯切石材提供一些基本信息。  相似文献   

10.
在对金刚石框架锯锯切加工动力学研究的基础上,通过单颗粒划痕和单个金刚石结块切削大理石试验,模拟金刚石框架锯锯切过程中,金刚石颗粒和结块在不同加工条件下的切削过程;测量分析了切削力、表面沟槽轮廊和有效切削磨粒数;观察并分析了加工表面形貌;运用岩石脆性断裂力学理论,分析了单颗粒金刚石切削机理。通过金刚石框架锯发加工大理石的切屑粒度分布分析,指出了实际加工切削条件对锯切破碎机理的影响。研究结果证实了金刚石框架锯锯工加工动力学研究的一些基本结论,最后提出了金刚石框架锯锯切大理石破碎机理模型。  相似文献   

11.
Based on the results of scratching tests with single point tools and single segments in a previous study, the contact area between stone and blade, the number of effective cutting edges and the cutting forces per diamond grit, per segment and blade in the frame sawing process are simulated by computer. The number of diamond grits per unit area, the distribution of diamond grits per segment and the effective depth of cut of diamond grits are calculated by a new method. The Monte Carlo method is applied to generate the position of diamond grits randomly. The results show that in cutting stroke, only half of the diamond grits on the segment surface cut stone with the depth of cut increasing and a limited moving distance. The interactions of the grooves created by different segments remove the stone and generate the saw kerf. The simulation results of cutting forces are consistent in tendency with the data tested in a frame sawing machine. Cutting feed and the cutting performance of the segments are the major factors which determine the cutting forces and segment wear. The optimized constant contact area between blade and stone depends on the segment spaces, the segment number and the segment size, the ratio of the length of block and the effective cutting length of blade etc.  相似文献   

12.
在对金刚石框架锯锯切加工动力学和锯切破碎机理模型的研究基础上,通过单颗粒金刚石划痕,单个刚石结块切削石材的系列实验,测量并分析了金刚石框架锯锯切加工时的切削力特征及其影响因素,结果表明,单颗粒金刚石和单个金刚石结块以及不同切削路径切削时的切削力不同的特征,反映了切削断裂过程性质的变化。金刚石浓度低和金刚石颗粒直径小时金刚石磨粒形状和切削方位对切削力有较大的影响,减小切削深度,使用切削液,在已切削表面上切削时,切削力下降,在框架锯锯切中,单颗粒金刚石承受载荷不高,考虑到磨粒切削干涉和重复切削的影响,单颗粒金刚石承载大约在5-15N之间。  相似文献   

13.
Cutting force prediction of sculptured surface ball-end milling using Z-map   总被引:7,自引:0,他引:7  
The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.  相似文献   

14.
This paper presents methods for refining the calculation of cutting temperatures. The heat flow densities and temperatures in the chip forming area, the accumulation zone and the area of the plastic contact between chip and tool affect the cutting temperature considerably. The new method takes the heat distribution for moving sources into account. The temperature in the contact between the flank face and the workpiece is calculated considering how friction and the accumulation zone affect the cutting temperature in the tertiary cutting zone. The methods incorporate material softening during temperature increase. The models are verified by experimental analyses.  相似文献   

15.
The local contact deflections caused by the elastic behavior of the wheel and work-piece are important factors affecting the mechanism of metal removal and the precision of manufactured parts. In spite of the extensive research directed in this area, there is however much use in industry of the rules of thumb or spark out techniques in finish grinding operations to produce components with good surface finish and close dimensional tolerances. These operations can be time consuming and reduce equipment productivity, particularly when the recent trend is towards higher productivity through automation such as adaptive control of processes. It is therefore very essential not only to fully understand the nature and mechanism of the local contact deflections but also the influence of parameters which affect them. This paper considers the use of two techniques for the study of local contact deflections. The single grain cutting technique which employed a single cutting grain on a dressed but otherwise complete wheel, rather than a single grain attached to a disc, was observed to be not suitable for studying the effect of wheel grade on contract deflections. Contrary to the several previous observations the deflections were observed to decrease with the increase in wheel hardness. The influence of the proximity of a clump of grains on the local contact deflections of a single grain was also examined.  相似文献   

16.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,采用三维分子动力学(MD)模拟方法研究了单点金刚石压头与单晶锗表面的接触和滑动过程。研究了压头在滑动切削过程中的材料变形、切削力、切屑堆积、表面形貌尺寸。仿真结果表明,随着垂直载荷的增加,切削力、表面形貌尺寸、切屑堆积在接触过程中逐渐增加,且与切削速度无明显关联。切削过程中切削力波动的根本原因是由于单晶锗晶格破坏引起位错的产生和能量波动。为了验证仿真结果的正确性,使用纳米划痕仪对单晶锗进行了纳米切削实验。实验结果与仿真结果一致,验证了MD模型的正确性和有效性。  相似文献   

17.
Marble cutting with single point cutting tool and diamond segments   总被引:1,自引:0,他引:1  
An investigation has been undertaken into the frame sawing with diamond blades. The kinematic behaviour of the frame sawing process is discussed. Under different cutting conditions, cutting and indenting-cutting tests are carried out by single point cutting tools and single diamond segments. The results indicate that the depth of cut per diamond grit increases as the blades move forward. Only a few grits per segment can remove the material in the cutting process. When the direction of the stroke changes, the cutting forces do not decrease to zero because of the residual plastic deformation beneath the diamond grits. The plastic deformation and fracture chipping of material are the dominant removal processes, which can be explained by the fracture theory of brittle material indentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号