首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用C500量热仪研究了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐(HNAF)的热分解特性,根据Kissinger和Ozawa方程计算了热分解的动力学参数,同时计算了热分解的热力学参数;采用Micro-DSCⅢ量热仪测定了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐的比热容,计算获得了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐热安全评价参数。结果表明,HNAF的活化能(E)和指前因子(A)分别为205.26 kJ/mol和1020.32 s-1;活化熵、活化焓和活化吉布斯自由能分别为140.76 J/(mol·K)、201.56 kJ/mol和200.39 kJ/mol。比热容方程与298.15 K时的摩尔比热容分别为C p=-1.560+0.016 T-2.263×10-5 T 2(J/(g·K))和446.028 J/(mol·K)。自加速分解温度、绝热分解温升、热爆炸临界温度分别为444.44 K、2382.89 K、452.86 K,绝热至爆时间为12.46~12.54 s。  相似文献   

2.
偶氮及氧化偶氮呋咱化合物的合成与表征   总被引:3,自引:0,他引:3  
以3,4-二氨基呋咱(DAF)为原料,次氯酸钠为氧化剂合成出3,3′-二氨基-4,4′-偶氮呋咱(DAAF);用相对较强的氧化剂过硫酸氢钾的复合盐(OXONETM)氧化DAF得到3,3′-二氨基-4,4′-氧化偶氮呋咱(DAOAF);以100%硝酸为硝化剂硝化DAAF制得3,3′-二硝氨基-4,4′-偶氮呋咱(DNAAF);DAAF和DAOAF分别经重氮化叠氮取代得到3,3′-二叠氮基-4,4′-偶氮呋咱(DADAF)和3-氨基-3′-叠氮基-4,4′-氧化偶氮呋咱(AAAF);DADAF久置一段时间完全转化成5-[4-叠氮基呋咱基]-5H-[1,2,3]三唑并[4,5-c][1,2,5]呋咱内盐(I)。采用红外、质谱、核磁等分析手段对所合成化合物进行表征。  相似文献   

3.
采用差示扫描量热仪和微量热仪对3,4–双(4'–氨基呋咱基–3')氧化呋咱(DATF)的热分解动力学、比热容和热分解参数进行研究。结果表明:DATF热分解反应动力学方程为dα/dt=(1013.05/β)(1–α)exp(–1.5×105/(RT)),DATF比热容(单位为J/(g·K))与热力学温度的关系式为cp=0.011 35+0.004 23 T–7.827 8×10–7T2,298.15 K时DATF标准摩尔热容为303.14 J/(mol·K)。根据比热容关系式及DATF热分解参数获得DATF的热爆炸临界温度为560.63 K,绝热至爆时间为32.03 s。  相似文献   

4.
用双氧水、钨酸钠及甲磺酸氧化3,4-二氨基呋咱(DAF)合成了3-氨基-4-硝基呋咱;用100%硝酸硝化DAF得到3,4-二硝胺基呋咱;用NaNO_2、H_2SO_4及NaN_3DAF重氮、取代DAF得到3-氨基-4-叠氮基呋咱;用30%的双氧水、钨酸钠及甲磺酸氧化3-氨基-4-叠氮基呋咱,得到3-叠氮基-4-硝基呋咱及3,3′-二叠氮基-4,4′-氧化偶氮呋咱。用TG-DSC研究了这些化合物的热行为。采用B3LYP/6-31G*方法预估了化合物的理论密度、标准生成、爆速、爆压。结果表明,氧化偶氮基的引入增强了呋咱类化合物的热稳定性;叠氮基的引入提高了化合物的生成焓。3-氨基-4-硝基呋咱中氨基转化为叠氮基,生成焓由183.26kJ/mol增至571.40 kJ/mol;硝胺基的引入显著提高了含能化合物的密度、爆速和爆压。  相似文献   

5.
以3-氰基-4-氨基氧化呋咱为原料,经催化环化、氧化偶联反应合成了3,3′-二(四唑-5-基)-4,4′-偶氮氧化呋咱;利用红外光谱、核磁共振及元素分析对产物进行了结构表征;采用差示扫描量热法(DSC)研究了其热分解过程;采用密度泛函理论方法,在B3LYP/6-31+G(d,p)水平上优化了其分子构型,计算了其键级并预估了其理论密度(ρ)、标准生成焓(Δ_fH(s))、爆速(D)和爆压(p)。结果表明,3,3′-二(四唑-5-基)-4,4′-偶氮氧化呋咱的分解峰温为195.6℃,ρ、Δ_fH(s)、D和p值分别为1.76g/cm~3、1 156.4kJ/mol、8 013m/s和28.6GPa;氧化呋咱环中配位氧侧的氮氧单键键长和键级分别为0.145nm和0.89,为分子中不稳定位点。  相似文献   

6.
新型含能材料呋咱类化合物的研究进展   总被引:1,自引:0,他引:1  
介绍了几种呋咱类含能化合物3,4–二氨基呋咱(DAF)、3,3′–二氨基–4,4′–氧化偶氮呋咱(DAAF)、3,3′–二氨基–4,4′–偶氮呋咱(DAAzF)、3,4–二硝基呋咱基氧化呋咱(DNTF)、3–硝基呋咱–4–甲醚(NFME)、(3 E,4 E)–二肟甲基氧化呋咱(DPX1)的合成方法和性能。通过与其他含能材料的性能对比,可知呋咱类化合物是一类性能优良、具有广阔应用前景、可应用于推进剂的含能材料。  相似文献   

7.
α-多硝甲基氧化偶氮含能化合物合成研究进展   总被引:1,自引:0,他引:1  
综述了α-多硝甲基氧化偶氮基团的构建方法,重点介绍了以伯胺和2,2-二甲基-5-硝基-5-亚硝基-1,3-二氧环己烷为原料,经过氧化偶联、水解、脱羟甲基、硝化等步骤合成该类含能基团的研究现状。根据文献及理论计算数据,对比分析了3,3′-双(α-二硝甲基氧化偶氮基)-4,4′-氧化偶氮呋咱、3,3′-双(α-三硝甲基氧化偶氮基)-4,4′-氧化偶氮呋咱等8种已报道的典型化合物的物化性能和爆轰性能。指出α-多硝甲基氧化偶氮基团是合成高能量密度化合物理想的结构单元,将其引入现有的氮杂含能母体结构,有望设计合成出性能优异的新型含能化合物。  相似文献   

8.
以二氯乙二肟、叠氮化钠、盐酸羟胺和三氯化钛等为原料,合成了1,1′-二羟基-5,5′-联四唑钛盐(Ti-BHT)燃烧催化剂。利用差示扫描量热法和热重法研究了不同升温速率下Ti-BHT金属盐的热分解过程,获得了热分解动力学参数和热分解机理函数;用Ozawa法和Kissinger法计算了热分解动力学参数,进而计算出自加速分解温度、热爆炸临界温度和热力学参数;用微量热法测定了Ti-BHT的比热容。结果表明,Ti-BHT的活化能Ek为143.49kJ/mol,指前因子Ak为1.23×10~(13)s~(-1),热分解属于n=3的随机成核和随后生长机理;自加速分解温度TSADT为466.21K,临界爆炸温度Tbpo为505.42K,热分解活化自由能ΔG~≠为142.74kJ/mol,活化焓ΔH~≠为139.41kJ/mol,活化熵ΔS~≠为-6.78J/(mol·K);Ti-BHT在298.15K的标准摩尔比热容为800.51J/(mol·K);摩擦爆炸概率为20%,特性落高大于125.9cm,说明其机械感度较低,具有较好的安全性能。  相似文献   

9.
用全自动量热仪RC1e测定了N–丁基硝氧乙基硝胺合成中两步硝化反应的热释放速率、传热系数以及比热容等热力学数据。结果表明,两步硝化反应的摩尔反应热分别为126 k J/mol和118 k J/mol,绝热温升分别为193 K和87 K。  相似文献   

10.
3,3’-二硝基-4,4’-偶氮氧化呋咱的合成及性能   总被引:1,自引:0,他引:1  
以丙二酸单酰肼单钾盐为原材料,经硝化和哑硝化反应“一锅法”合成了4-氨基-3-叠氮羰基氧化呋咱(AN-FO),然后通过ANFO合成出3,3 ’-二氨基-4,4’-偶氮氧化呋咱(DAAFO),DAAFO在双氧水/浓硫酸溶液中氧化为DNAFO.用元素分析、IR、MS和DSC-TG对其结构进行了表征.结果表明,丙二酸单肼单钾...  相似文献   

11.
在4种1,3,4-噁二唑联呋咱分子骨架上引入三硝基甲基、氟代偕二硝基、硝基及硝氨基等含能基团,设计了5类共10种含能化合物;采用密度泛函方法B3LPY/6-31G(d, p)基组,研究了化合物的物化性能、爆轰性能(密度、生成焓、氧平衡、爆速、爆压)与安全性能(静电势分布和键解离能)间的构效关系。结果表明,三硝基甲基及氟代偕二硝基可大大改善呋咱衍生物的爆轰性能,而联四芳环的1,3,4-噁二唑联呋咱的共轭母体骨架可有效提高致爆基团中C—NO_2的键离解能,是设计高能不敏感含能化合物的有效方法;其中,3,3′-二(5-三硝基甲基-1,3,4-噁二唑)-4,4′-偶氮呋咱(E-1)密度为1.969g/cm~3,爆速达9130m/s,爆压为38.82GPa,最弱键(C—NO_2)键离解能为131.57kJ/mol,表现出优异的综合性能。  相似文献   

12.
以二氯乙二肟、二甲基甲酰胺、叠氮化钠、盐酸羟胺和硝酸铅等为原料,合成了1,1-二羟基-5,5′-联四唑羟胺铅盐(Pb-TKX-50)燃烧催化剂,研究了Pb-TKX-50对推进剂机械感度的影响以及与推进剂组分的相容性;利用差示扫描量热法和热重法研究了Pb-TKX-50在不同升温速率下的热分解过程,计算其表观活化能(E K和E O)和指前因子(A K),得到其热分解动力学参数、热分解机理函数、热爆炸温度和热力学性质。结果表明,在推进剂配方中加入Pb-TKX-50燃烧催化剂,可以改善其撞击感度和摩擦感度,且与推进剂组分的相容性良好;Pb-TKX-50的主峰分解温度相对于TKX-50的主峰分解温度显著提高,说明其热稳定性显著提高。Ozawa法和Kissinger法得到Pb-TKX-50的表观活化能分别为181.45 kJ/mol和182.49 kJ/mol,且热分解过程符合Avrami-Erofeev方程;Pb-TKX-50的自加速分解温度和爆炸临界温度分别为500.53 K和544.33 K,表明其热稳定性良好;Pb-TKX-50催化剂的热分解自由能(ΔG^≠)为158.87 kJ/mol,活化焓(ΔH^≠)为187.03 kJ/mol,活化熵(ΔS≠)为52.98 kJ/mol。  相似文献   

13.
4,4'-二硝基双呋咱醚的合成与表征   总被引:1,自引:0,他引:1  
以3,4-二氨基呋咱(DAF)为原料,经Caro-acid氧化生成二硝基呋咱(DNF),碱性条件下DNF分子间硝基醚化后合成目标化合物4,4′-二硝基双呋咱醚(FOF-1).采用红外光谱、质谱、元素分析及核磁共振进行了结构表征;初步探讨了硝基分子间醚化合成FOF-1的反应机理;优化了氧化、分子间醚化工艺,确定了最佳合成条件:氧化反应时间为3.5 h, H2SO4的起始浓度为51.7%,醚化反应时间为2.5 h,水质量分数小于0.03%.总收率达到42%,纯度为99.6%.  相似文献   

14.
呋咱含能化合物的合成及其衍生物反应研究进展   总被引:2,自引:0,他引:2  
阐述了二肟脱水和氧化呋咱还原2种构建呋咱环的主要方法,以及氨基取代呋咱衍生物、硝基取代呋咱衍生物和氰基取代呋咱衍生物的反应;列举了几种典型的呋咱含能化合物如二硝基呋咱(DNF)、二氨基偶氮呋咱(DAAF)、3,4–双(4′–硝基呋咱–3′–基)氧化呋咱(DNTF)、呋咱醚类化合物(FOF–1,FOF–2,FOF–13)和稠环类呋咱含能化合物(MNOTO、4,5,9,10–四硝基–1,4,5,8–四氮杂氢化萘(2,3,–6,7)并双呋咱)的合成方法及性能。  相似文献   

15.
采用最小自由能法,研究了含呋咱衍生物的Al/Mg/HTPB/AP富燃料推进剂的能量性能,结果表明,随着呋咱衍生物含量的增加,富燃料推进剂比冲明显增加,其中含质量分数为25%的DAAzF(4,4'-二氨基-3,3'-偶氮呋咱)的富燃料推进剂比冲可达7 522.9 N·s·kg-1,比相同质量含量下含CL-20富燃料推进剂比冲高260N·s·kg-1.含呋咱衍生物富燃料推进剂气相平均相对分子质量((-M)g)约为29,补燃室火焰温度(Tc)约为2 200K,且二者随着呋咱衍生物含量增加而略有增加.  相似文献   

16.
以3,4-双(3′-氨基呋咱基-4′-)氧化呋咱(BAFF)为原料,经SnCl2·2H2O/CH3OH体系还原,得到中间体3,4-双(3′-氨基呋咱基-4′-)呋咱(BAFF-1),再通过Caro′s acid氧化制得4-氨基-4″-硝基-[3,3′,4′,3″]-三呋咱(ANTF),用IR、NMR、MS和元素分析对其结构进行了表征。考察了BAFF-1与H2O2摩尔比、反应时间、反应温度和过氧化氢含量对收率的影响,得到最佳合成工艺条件为n(BAFF-1)∶n(35%H2O2)∶n(浓H2SO4)为1∶8∶40,反应时间为4h,反应温度为30℃,收率为45.6%。用Kamlet公式计算密度为1.782g/cm3时ANTF的爆速、爆压分别为8.20km/s、29.64GPa,有望成为一种可替代TNT的新型熔铸炸药。  相似文献   

17.
以4-[3,5-双(4-氨基苯氧基)苯氧基]邻苯二甲腈和3,3′,4,4′-联苯四甲酸二酐为原料,经聚酰胺酸热酰亚胺化制备含氰基的聚酰亚胺(CN-BP-PI)薄膜。采用傅里叶变换红外光谱、热重分析、差示扫描量热法对CN-BP-PI薄膜进行了分析。采用动态热重法研究了CN-BP-PI的分解动力学,用积分法结合常见固相热分解反应动力学函数来判断热分解的动力学函数。由Ozawa,KAS,Kissinger,Achar,Coats-Redfern,MacCallum-Tanner,van Krevelen方程求热分解反应的动力学参数。转化率为0.2~0.8时所得CN-BP-PI在氮气中热分解反应的表观活化能为119.68~215.61 kJ/mol,平均活化能为136.35 kJ/mol,指前因子平均值为8.52×107 s-1。  相似文献   

18.
以柔性二胺单体1,3-双(4-氨基苯氧基)苯(134BAPB)和含支链二胺单体3,3′-二乙基-4,4′-二氨基二苯甲烷(DEMMD)与3,3′,4,4′-二苯酮四酸二酐(BTDA)进行三元共聚,制备了一系列聚酰亚胺(PI)薄膜。通过傅里叶红外光谱、差示扫描量热仪、热重分析仪、热机械分析仪及电子万能材料试验机对材料的结构、热性能和力学性能进行了表征。结果表明PI薄膜已经成功制备,热性能与力学性能良好。  相似文献   

19.
为研究高燃速推进剂改铵铜(GATo)的热安全性,采用差示扫描量热(DSC)法和热重(TG)法分析了GATo推进剂的热分解过程,计算了其热分解活化能(E_a)、指前因子(A)、分解温度(t_(e0))、热爆炸临界温度(t_0)及热力学参数,并测试了压伸成型管状GATo及含溶剂GATo推进剂药浆的5s延滞期爆发点及热爆发反应参数。结果表明,采用Kissinger法计算得到GATo推进剂的热分解活化能为139.1kJ/mol,指前因子为7.5×10~(15)s~(-1),分解温度为172.0℃;根据Hu-Zhao-Gao法计算得到GATo推进剂的热爆炸临界温度为182.8℃,低于RDX-CMDB推进剂GHT及GHQ;在升温速率为10℃/min时,GATo推进剂分解峰值温度的活化自由能(ΔG~≠)为113.8kJ/mol,活化焓(ΔH~≠)为135.3kJ/mol,活化熵(ΔS~≠)为29.7J/(K·mol)~(-1);压伸成型管状GATo与含溶剂GATo药浆的5s延滞期爆发点分别为231和234℃,热爆发分解反应活化能分别为112和132kJ/mol,表明溶剂对其热爆发分解反应活化能有较大影响。  相似文献   

20.
在程序升温条件下,用DSC研究了2,5,7,9-四硝基-2,5,7,9-四氮杂双环[4,3,0]壬酮-8的放热分解反应动力学参数.表明该反应的微分形式的动力学模式函数、表观活化能(Ea)和指前因子(A)分别为3(1-α)[-ln(1-α)](2)/(3), 204.7 kJ/mol 和 1020.89 s-1.该化合物的热爆炸临界温度为188.81℃.反应的活化熵(ΔS≠)、活化焓(ΔH≠)和活化自由能(ΔG≠)分别为141.6 J/(mol*K), 200.9 kJ/mol 和136.8 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号