首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a new technique for a posteriori error control and adaptive mesh design is presented for finite element models in perfect plasticity. The approach is based on weighted a posteriori error estimates derived by duality arguments as proposed in Becker and Rannacher (1996) and Rannacher and Suttmeier (1997) for linear problems. The conventional strategies for mesh refinement in finite element methods are mostly based on a posteriori error estimates for the global energy norm in terms of local residuals of the computed solution. These estimates reflect the approximation properties of the trial functions by local interpolation constants while the stability property of the continuous model enters through a global coercivity constant. However, meshes generated on the basis of such global error estimates are not appropriate in computing local quantities as point values or contour integrals and in the case of nonlinear material behavior. More accurate and efficient error estimation can be achieved by using suitable weights which can be obtained numerically in the course of the refinement process from the solutions of linearized dual problems. This feed-back approach is developed here for primal-mixed finite element models in linear-elastic perfect plasticity.  相似文献   

2.
Effective methods leading to automated adaptive numerical solutions to geometrically non-linear shell-type problems are studied in this work. In particular, procedures for improving the accuracy, the reliability and the computational efficiency of the finite element solutions are of primary interest here. This is addressed using h-adaptive mesh refinement based on a posteriori error estimation, self-adaptive methods in global incremental/iterative processes, as well as smart algorithms and heuristic approaches based on methods of knowledge engineering. Seemless integration of h-adaptive finite element methods with adaptive step-length control makes it possible to maintain a prescribed accuracy while maintaining the solution efficiency without user intervention throughout the process of a non-linear analysis. Several examples illustrate the merit and potential of the approach studied herein and confirm the feasibility of developing an automatic adaptive environment for geometrically non-linear analysis of shell structures.  相似文献   

3.
A local elliptic projection is introduced to provide improved local approximations to the finite element solution of boundary-value problems. The approach yields a composite global approximation that is more accurate and provides a good starting value for iterative solution methods. The procedure is particularly effective when used in conjunction with adaptive mesh refinement, as illustrated in numerical studies involving two-point problems of boundary-layer and interior-layer type.  相似文献   

4.
A solution strategy is proposed and implemented for taking advantage of the hierarchical structure of linear equation sets arising from the p-type finite element method using a hierarchical basis function set. The algorithm dynamically branches to either direct or iterative solution methods. In. the iterative solution branch, the substructure of the finite element equation set is used to generate a lower order preconditioner for a preconditioned conjugate gradient (PCG) method. The convergence rate of the PCG algorithm is monitored to improve the heuristics used in the choice of the preconditioner. The robustness and efficiency of the method are demonstrated on a variety of three dimensional examples utilizing both hexahedral and tetrahedral mesh discretizations. This strategy has been implemented in a p-version finite element code which has been used in an industrial environment for over two years to solve mechanical design problems.  相似文献   

5.
Recently a refined approach to error control in finite element (FE) discretisations has been proposed, Becker and Rannacher (1995b), (1996), which uses weighted a posteriori error estimates derived via duality arguments. The conventional strategies for mesh refinement in FE models of problems from elasticity theory are mostly based on a posteriori error estimates in the energy norm. Such estimates reflect the approximation properties of the finite element ansatz by local interpolation constants while the stability properties of the continuous model enter through a global coercivity constant. However, meshes generated on the basis of such global error estimates are not appropriate in cases where the domain consists of very heterogeneous materials and for the computation of local quantities, e.g., point values or contour integrals. This deficiency is cured by using certain local norms of the dual solution directly as weights multiplying the local residuals of the computed solution. In general, these weights have to be evaluated numerically in the course of the refinement process, yielding almost optimal meshes for various kinds of error measures. This feed-back approach is developed here for primal as well as mixed FE discretisations of the fundamental problem in linear elasticity.  相似文献   

6.
Finite element equivalents of the equations governing shearing and buoyancy driven flows are derived, and reduced to upwind forms suitable for the solution of problems in which the Reynolds and Rayleigh numbers are large. A modification to the central difference iterative method is studied which increases the Reynolds and Rayleigh numbers for which a central difference form may be used. A comparison is made between the results obtained using the central and upwind forms of the finite element method and those predicted by finite difference methods in the case of flow in a cavity. A mesh refinement study is made. The upwind forms of the finite element equations are applied to the solution of a complex flow problem involving the flow of glass in a throated furnace in the case of constant- and temperature- dependent viscosity and conductivity.  相似文献   

7.
This study enhances the classical energy norm based adaptive procedure by introducing new refinement criteria, based on the projection-based interpolation technique and the steepest descent method, to drive mesh refinement for the scaled boundary finite element method. The technique is applied to p-adaptivity in this paper, but extension to h- and hp-adaptivity is straightforward. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh, is used to represent the unknown exact solution. In the new adaptive approach, a projection-based interpolation technique is developed for the 2D scaled boundary finite element method. New refinement criteria are proposed. The optimum mesh is assumed to be obtained by maximizing the decrease rate of the projection-based interpolation error appearing in the current solution. This refinement strategy can be interpreted as applying the minimisation steepest descent method. Numerical studies show the new approach out-performs the conventional approach.  相似文献   

8.
This paper presents a finite element solver for the simulation of steady non‐Newtonian flow problems, using a regularized Bingham model, with adaptive mesh refinement capabilities. The solver is based on a stabilized formulation derived from the variational multiscale framework. This choice allows the introduction of an a posteriori error indicator based on the small scale part of the solution, which is used to drive a mesh refinement procedure based on element subdivision. This approach applied to the solution of a series of benchmark examples, which allow us to validate the formulation and assess its capabilities to model 2D and 3D non‐Newtonian flows.  相似文献   

9.
The paper deals with the application of an adaptive, hierarchic‐iterative finite element technique to solve two‐dimensional electromechanical boundary value problems with impermeable cracks in piezoelectric plates. In order to compute the dielectric and mechanical intensity factors, the interaction integral technique is used. The iterative finite element solver takes advantage of a sequence of solutions on hierarchic discretizations. Based on an a posteriori error estimation, the finite element mesh is locally refined or coarsened in each step. Two crack configurations are investigated in an infinite piezoelectric plate: A finite straight crack and a finite kinked crack. Fast convergence of the numerical intensity factors to the corresponding analytical solution is exemplarily proved during successive adaptive steps for the first configuration. Similar tendency can be observed for the second configuration. Furthermore, the computed intensity factors for the kinks are found to coincide well with the corresponding analytical values. In order to simulate the kinks spreading from a straight crack, the finite element mesh is modified automatically with a specially developed algorithm. This forms the basis for a fully adaptive simulation of crack propagation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
An error analysis and an adaptive refinement scheme are developed for use with a class of least-squares finite element methods. The error indicators for the refinement procedure are based on element residuals which are calculated as part of the least-squares method. The solution scheme used in the supporting numerical studies employs an elment-by-element conjugate gradient algorithm. Consequently, storage and computation are not influenced by nodal numbering.  相似文献   

11.
The use of the finite element method for complex engineering problems is now common. To ease the burden on the engineer the development of smart or adaptive computational methods is now required to model complex problems. In this paper we investigate the development of an adaptive finite element method for fracture-related problems. The adaptive method involves various stages which include the finite element analysis, error estimation/indication, mesh refinement and fracture/failure analysis in a loop. Some simple error estimators, based on stress projection, are used to investigate the adaptive finite element process. Element refinement is based on three schemes; the first and second are a simple and hierarchical refinement scheme with transitioning which avoids the need for constraint equations between element boundaries. Another scheme based on constraint equations between elements is also examined. The energy norm is used to estimate the element error. The software has the ability to introduce a discrete fracture in the structure according to standard fracture analysis practice. Crack tip parameters are calculated using a least-squares fit of the displacements into the asymptotic crack tip displacement field. Some simple examples are used to investigate the adaptive process, its behavior and some of the practical problems encountered. The convergence and equilibrium of the adaptive process, in terms of global error in the energy norm, are investigated. In the example the same problem is analyzed using both a fine computational grid and a coarse one. The coarse mesh is then adapted using the three different procedures available. The estimated error in the solution and the stress intensity are shown against the number of elements and number of iterations. Some further areas of research in adaptive finite element analysis are discussed.  相似文献   

12.
A finite element formulation is presented for the equations governing the steady thermohydrodynamic behaviour of liquid lubricated bearings. This formulation permits application of the iterative solution scheme to bearings of arbitrary geometry. A generalized Reynolds equation resulting from the combination of the mass and momentum conservation equations is cast into variational form and used to derive general finite element equations. The method of weighted residuals with Galerkin's criterion is used to generate finite element matrix equations for the thermal energy equation. In addition to the finite element formulation, a discussion of appropriate finite difference techniques is also given for problems without complex geometry. As an example, the formulations are applied to obtain numerical solutions for a three-dimensional sector thrust bearing operating in the thermohydrodynamic regime. Pressure, velocity and temperature distributions are give, and the thermohydrodynamic solutions are compared with the results of classical isothermal theory.  相似文献   

13.
In this work, we present an adaptive polygonal finite element method (Poly-FEM) for the analysis of two-dimensional plane elasticity problems. The generation of meshes consisting of n ? sided polygonal finite elements is based on the generation of a centroidal Voronoi tessellation (CVT). An unstructured tessellation of a scattered point set, that minimally covers the proximal space around each point in the point set, is generated whereby the method also includes tessellation of nonconvex domains. In this work, we propose a region by region adaptive polygonal element mesh generation. A patch recovery type of stress smoothing technique that utilizes polygonal element patches for obtaining smooth stresses is proposed for obtaining the smoothed finite element stresses. A recovery type a ? posteriori error estimator that estimates the energy norm of the error from the recovered solution is then adopted for the Poly-FEM. The refinement of the polygonal elements is then made on an region by region basis through a refinement index. For the numerical integration of the Galerkin weak form over polygonal finite element domains, we resort to classical Gaussian quadrature applied to triangular subdomains of each polygonal element. Numerical examples of two-dimensional plane elasticity problems are presented to demonstrate the efficiency of the proposed adaptive Poly-FEM.  相似文献   

14.
Computational fracture mechanics: Research and application   总被引:3,自引:0,他引:3  
This paper focuses on the impact of computational methodology on furthering the understanding of fundamental fracture phenomena. The current numerical approaches to the solution of fracture mechanics problems, e.g. finite element (FE) methods, finite difference methods and boundary element methods, are reviewed. The application of FE methods to the problems of linear elastic fracture problems is discussed. Particular emphases are placed on the stress intensity factors, energy release rate in mixed mode fracture and dynamic crack propagation. Numerical solutions of ductile fracture problems are surveyed. A special focus is placed on stable crack growth problems. The need for further research in this area is emphasized. The importance of large strain phenomena and accurate modeling of non-linearities is highlighted. An expanded version of fracture mechanics methodology is given by Liebowitz [Advances in Fracture Research 3. Pergamon Press, Oxford (1989)]; additional treatment is given in this paper to numerical results incorporating error estimates and algorithms for mesh design into the FE code. The adaptive method involves various stages which includes FE analysis, error estimation/indication, mesh refinement and fracture/failure analysis iteratively. Reference is made to integrate expert knowledge and a hierarchical, rule-based, decision process to fracture mechanics for the purpose of designing practical fracture-proof engineering products. Some further areas of research in adaptive finite element analysis are discussed.  相似文献   

15.
A program for finite element analysis of 3D linear elasticity problems is described. The program uses quadratic hexahedral elements. The solution process starts on an initial coarse mesh; here error estimators are determined by the standard Babu?ka-Rheinboldt method and local refinement is performed by partitioning of indicated elements, each hexahedron into eight new elements. Then the discrete problem is solved on the second mesh and the refinement process proceeds in the following way-on the ith mesh only the elements caused by refinement on the (i-1)th mesh can be refined. The control of refinement is the task of the user because the dimension of the discrete problem grows very rapidly in 3D. The discrete problem is being solved by the frontal solution method on the initial mesh and by a newly developed and very efficient local multigrid method on the refined meshes. The program can be successfully used for solving problems with structural singularities, such as re-entrant corners and moving boundary conditions. A numerical example shows that such problems are solved with the same efficiency as regular problems.  相似文献   

16.
Announcements     
A new finite element method is devised for the numerical solution of elliptic boundary value problems with geometrical singularities. In it, the singularity is eliminated form the computational domain in an exact fashion. This is in contrast to other common methods, such as those which use a refined mesh in the singularity region, or those which use special singular finite elements. In them, the singularity is treated as a part of the numerical scheme. The new method is illustrated on an elliptic differential equation in a domain containing a re-entrant corner. Numerical experiments show that the new method yields result which are generally much more accurate than those obtained by using the standard finite element method with mesh refinement in the singularity region. Both methods require about the same computing time.  相似文献   

17.
A simple algorithm is developed for adaptive and automatic h refinement of two-dimensional triangular finite element meshes. The algorithm is based on an element refinement ratio that can be calculated from an a posteriori error indicator. The element subdivision algorithm is robust and recursive. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several example problems are presented to illustrate the utility of the approach.  相似文献   

18.
We present geometrically nonlinear formulations based on a mixed least‐squares finite element method. The L2‐norm minimization of the residuals of the given first‐order system of differential equations leads to a functional, which is a two‐field formulation dependent on displacements and stresses. Based thereon, we discuss and investigate two mixed formulations. Both approaches make use of the fact that the stress symmetry condition is not fulfilled a priori due to the row‐wise stress approximation with vector‐valued functions belonging to a Raviart‐Thomas space, which guarantees a conforming discretization of H(div). In general, the advantages of using the least‐squares finite element method lie, for example, in an a posteriori error estimator without additional costs or in the fact that the choice of the polynomial interpolation order is not restricted by the Ladyzhenskaya‐Babu?ka‐Brezzi condition (inf‐sup condition). We apply a hyperelastic material model with logarithmic deformation measures and investigate various benchmark problems, adaptive mesh refinement, computational costs, and accuracy.  相似文献   

19.
The influence of the presence of singular points and boundary layers associated with the edge effects in a Reissner–Mindlin (RM) plate in the design of an optimal mesh for a finite element solution is studied, and methods for controlling the discretization error of the solution are suggested. An effective adaptive refinement strategy for the solution of plate bending problems based on the RM plate bending model is developed. This two-stage adaptive strategy is designed to control both the total and the shear error norms of a plate in which both singular points and boundary layers are present. A series of three different order assumed strain RM plate bending elements has been used in the adaptive refinement procedure. The locations of optimal sampling points and the effect of element shape distortions on the theoretical convergence rate of these elements are given and discussed. Numerical experiments show that the suggested refinement procedure is effective and that optimally refined meshes can be generated. It is also found that all the plate bending elements used can attain their full convergence rates regardless of the presence of singular points and boundary layers inside the problem domain. Boundary layer effects are well captured in all the examples tested and the use of a second stage of refinement to control the shear error is justified. In addition, tests on the Zienkiewicz–Zhu error estimator show that their performances are satisfactory. Finally, tests of the relative effectiveness of the plate bending elements used have also been made and it is found that while the higher order cubic element is the most accurate element tested, the quadratic element tested is the most efficient one in terms of CPU time used. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
有限元网格修正的自适应分析及其应用   总被引:1,自引:0,他引:1  
本文在对有限元变量连续条件分析的基础上,将应力误差范数用于计算结果的误差估计,使非结构化网格生成系统与有限元计算有机地结合起来,并将网格单元修正的自适应分析应用于二维应力集中问题的研究,从而实现了有限元最佳化离散,提高了有限元数值求解的可靠性和近似程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号