首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
开展了规模为36 m3/d的中试研究,考察了不同臭氧投加量下臭氧/生物活性炭(O3/BAC)工艺深度处理某印染制革工业园区污水厂生化处理出水的效果,探讨了作用机理.当臭氧投量为25 mg/L时对COD、色度、TOC、UV254的去除效果最佳,去除率分别为17.4%、54.3%、14.7%和47.5%.在生物活性炭挂膜启动期间,系统对COD的去除率先下降后上升,32 d后稳定在50%左右.在生物活性炭稳定运行期间,系统进水COD和色度平均值分别为100 mg/L和112.5倍,出水值则分别降至50 mg/L和5倍,达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级B标准.臭氧将大分子的有机物降解成小分子有机物后被生物活性炭吸附和氧化,同时产生部分微生物胞外分泌物及其代谢产物,TOC和UV254在分子质量<1 ku区间的比例分别由进水的60.7%和58.8%增加至出水的66.8%和65.7%.  相似文献   

2.
采用O3/BAF和BAF/O3两种组合工艺对石化废水二级出水进行深度处理,探讨了在不同的臭氧投加量下,两种工艺对COD和NH3-N的去除效果,以及处理过程中废水中有机物分子质量分布的变化。结果表明,O3投加量为15 mg/L时,O3/BAF组合工艺对COD的去除率最高为32.8%,此时进、出水COD平均浓度分别为68.82、46.22 mg/L,但最高出水COD浓度50mg/L。而对于BAF/O3组合工艺而言,由于臭氧氧化后置,臭氧投加量越大,对COD的去除率越高,O3投加量20 mg/L时,BAF/O3工艺对COD的去除率要高于O3/BAF工艺,在O3投加量为25 mg/L时出水COD趋于稳定,且低于50 mg/L。SUVA和分子质量分布结果表明,在O3/BAF工艺中O3可以对废水起到预处理作用,使大分子物质转化为小分子物质,提高废水的可生化性,从而增强BAF单元对COD的去除效果。O3/BAF工艺的臭氧投加量为20 mg/L时,对NH3-N的去除效果最好,去除率为35.1%;而BAF/O3工艺对氨氮的去除与臭氧投加量的关系不大,试验过程中在12%左右。由于石化二级出水NH3-N平均在0.4~2.5 mg/L之间,可达到《污水综合排放标准》(GB 8978—1996)中一级标准的限值。从保障最终出水水质的要求来看,BAF/O3工艺更适用于石化二级出水的深度处理。  相似文献   

3.
印染废水深度处理工程及工艺改进   总被引:3,自引:2,他引:1  
采用曝气生物滤池(BAF)/臭氧预氧化/BAF组合工艺对印染废水二级生化处理出水进行深度处理,COD从进水的90~160 mg/L左右稳定降至30 mg/L以下,色度从进水的64~128倍左右降至2~4倍,出水浊度<1 NTU,排放水质达到回用要求,处理成本为1.43元/m~3.之后又对工艺进行改进,设计出一体化装置,COD去除率>70%,其他指标均达到排放标准,处理成本仅为0.89元/m~3.  相似文献   

4.
研究了"臭氧+普通/改性生物砂滤池"组合工艺对污水厂二级出水的处理效果。采用逐步增加臭氧投加量的方法来驯化生物砂滤池中的微生物,18 d后生物膜培养驯化成功。滤池稳定运行后,当臭氧投加量为3 mg/L、臭氧接触时间为15 min、水力负荷为4.5 m~3/(m~2·h)时,"臭氧+亲水改性生物砂滤池"、"臭氧+铁离子改性生物砂滤池"、"臭氧+疏水改性生物砂滤池"与"臭氧+普通生物砂滤池"四种组合工艺出水中NH_3-N平均浓度分别为0.98、1.33、2.54和2.25 mg/L,UV254平均值分别为0.075、0.076、0.073和0.079 cm-1,COD平均浓度分别为32.76、34.18、39.35和38.40 mg/L;臭氧预氧化对色度的平均去除率可达48%以上,四种组合工艺出水色度都维持在12.0倍以下,浊度均低于2.0 NTU。在低温6~12℃时,四种生物砂滤池对二级出水中NH3-N、UV254、COD、色度和浊度等常规污染物质的去除效果下降13%~20%。  相似文献   

5.
臭氧—曝气生物滤池对纺织洗水的回用处理   总被引:15,自引:5,他引:10  
采用臭氧--曝气生物滤池(BAF)工艺对某纺织洗水厂二级生化处理出水进行了回用处理.结果表明,在进水COD约为80 mg/L、色度为16倍、浊度约为8 NTU的条件下,当臭氧投加量为30~45 mg/L、BAF的水力停留时间为3~4 h、气水比为5:1时,出水COD<30 ms/L、色度为2倍、浊度<1 NTU,出水水质可满足生产工艺对回用水的水质要求.  相似文献   

6.
采用臭氧处理北京市高碑店污水处理厂二沉池出水,就臭氧对二沉池出水的氧化特性进行了研究。结果表明,臭氧对二沉池出水中的COD、色度、UV254均有较好的去除效果,但对TOC的去除效果较差。试验条件下,臭氧的最佳投加量为10 mg/L、最佳接触时间为15 min,此时对COD的去除率为19.12%,去除单位COD的臭氧投加量为1.79 mg;对色度的去除率为58.59%,去除单位色度的臭氧投加量为1.46 mg;对UV254的去除率为39.57%,去除0.001 cm-1吸光度的臭氧投加量为2.82 mg;TOC/UV254提高到140.29,可生化性提高了1.59倍。  相似文献   

7.
混凝联合O_3、O_3/UV深度处理焦化废水的研究   总被引:3,自引:0,他引:3  
采用混凝联合O3、O3/UV深度处理焦化废水的生物处理出水。试验结果表明:当混凝剂Al2(SO4)3的投量为900 mg/L时,对TOC、COD、色度和UV254的去除率分别为23.2%、19.5%、33.6%和27.1%,相应的出水值分别为55.5 mg/L、196 mg/L、680倍和2.53 cm-1。混凝出水经O3/UV深度处理的效果优于单独O3氧化的,当臭氧投量为2.8 g/L、反应时间为80 min、UV照射强度为30 W时,对TOC、COD、色度和UV254的去除率分别达到91.8%、73.1%、96.1%和97.6%,相应的出水值分别为5.9 mg/L、60 mg/L、40倍和0.081 cm-1,出水COD浓度达到《污水综合排放标准》(GB 8978—1996)的一级标准,且大大提高了废水的可生化性。  相似文献   

8.
混凝/生化/化学氧化法处理浆染废水   总被引:2,自引:0,他引:2  
染织行业的浆染生产废水具有浓度高、色度大和含有大量难降解有机物的特点,属于难降解、污染重的工业废水。实践证明,当进水BOD5、COD、SS和色度分别约为800、3 600、900mg/L和12 000倍时,采用物化/生化/化学氧化法处理此类生产废水(800 m3/d),出水水质可稳定达到当地的排放标准。  相似文献   

9.
针对臭氧耦合ASBR/SBR污泥减量化工艺,研究了臭氧氧化对硝化和反硝化能力的影响。结果表明,在臭氧投加量为0.074gO3/gSS左右的条件下,系统进水的COD平均值由氧化前的659mg/L增加到氧化后的713mg/L,碳源量提高了8.2%。进水氨氮由34.3mg/L增加到39.9mg/L,出水氨氮由1.7mg/L升高至1.9mg/L,硝化能力基本未受到影响。SBR段的出水NO3--N平均值由5.85mg/L下降为2.2mg/L,表明系统的反硝化能力增强。投加臭氧前后,系统进水TN平均值分别为49.1mg/L和52.9mg/L,出水TN平均值分别为10.9和13.4mg/L,对TN的平均去除率分别为77.7%和74.6%。可见,臭氧氧化未对SBR段的硝化和反硝化效果产生明显影响。  相似文献   

10.
针对广东省某皮革公司生化处理出水水质不达标的问题,提出采用臭氧催化氧化/曝气生物滤池/Fenton氧化组合工艺进行升级改造,系统处理水量为600 m3/d。经过调试运行,出水COD、氨氮浓度可分别控制在40、10 mg/L以下,色度10倍,完全满足广东省《水污染物排放限值》(DB 44/26—2001)中第二时段一级排放标准。  相似文献   

11.
不同填料对曝气生物滤池除污效果的影响   总被引:2,自引:0,他引:2  
采用臭氧/BAF组合工艺处理制革园区污水处理厂的二级生化出水,考察了不同填料BAF挂膜启动的运行情况,探讨了臭氧投加量为25 mg/L时不同填料BAF稳定运行的除污效果及机理。平行运行3个BAF,其填料分别为活性炭、陶粒、活性炭/陶粒(体积比为1∶1)。在挂膜启动期间,活性炭和混合填料BAF对COD的去除率表现为先下降再上升最后趋于稳定,32 d后出水COD<60 mg/L,而陶粒BAF对COD的去除效果不明显。稳定运行期间,进水COD、色度平均值分别为117 mg/L和112.5倍,活性炭BAF的出水值则降至50 mg/L和6倍,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级B标准。在此期间活性炭、混合填料和陶粒BAF中的生物量分别为30.69、25.87、15.18 nmol/g。  相似文献   

12.
污水厂二级处理出水的臭氧氧化特性及其动力学   总被引:3,自引:0,他引:3  
研究了城市污水厂二级处理出水的臭氧氧化特性及其动力学规律。结果表明,臭氧氧化可以显著提高二级处理出水的可生化性,当臭氧投量为10mg/L、接触时间为2min时,可使其BDOC和TOC/UV254值分别提高约1倍;当接触时间为4min时,臭氧氧化对COD、TOC的去除率分别达到25.7%和16.5%,使UV254和色度分别降低了62.31%和79.25%,同时分子质量〈1ku的有机物所占比例由原来的52.9%升高到72.6%。当接触时间从2min延长到30min时,对NH3-N的去除率由1.3%增加到22.5%。拟合结果表明,在(0~1.6)、(1.6~16)和(16~30)min的时段内,臭氧氧化反应均为一级反应,但反应速率逐渐降低。  相似文献   

13.
电磁(EM)催化高级氧化用于桥东污水处理厂升级改造   总被引:1,自引:0,他引:1  
石家庄桥东污水处理厂于2006年建成投产,处理水量为50×104m3/d,进水中60%为制药和化工废水,原设计出水水质执行《污水综合排放标准》(GB 8978—1996)的二级标准。2008年实施了升级改造工程,出水BOD5、氨氮、总氮、SS和总磷等达到了《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,但COD约为70 mg/L、色度为120倍。为此,进行了第二次升级改造,采用电磁(EM)催化高级氧化工艺,出水COD≤50 mg/L、色度≤15倍,达到了排放标准,臭氧投加量为12~14 mg/L,吨水处理成本增加0.18元/m3。  相似文献   

14.
针对焦化废水二级出水的COD、氨氮和色度难以达到《污水综合排放标准》(GB8978—1996)的一级标准的情况,采用铁炭内电解/两级生物滤池对焦化废水二级生化出水进行了深度处理。在最佳条件下,铁炭内电解对COD、TOC、色度、总磷、NH3-N和TN的去除率分别为47.3%、44.2%、93.3%、96.4%、11.3%、10.4%,出水BOD5/COD值从0.17提高到0.31;后续的两级生物滤池对COD的去除率可达到50%以上,系统最终出水COD<60 mg/L、总磷<0.5 mg/L、总氮<25 mg/L、氨氮<1 mg/L、色度<30倍,可达到GB 8978—1996的一级标准。由此可知,铁炭内电解/两级生物滤池处理焦化废水二级出水具有稳定和高效等特点。  相似文献   

15.
采用臭氧-颗粒活性炭(O3-GAC)工艺深度处理江苏省某化工区污水处理厂混合化工废水二级出水。研究结果表明,在该深度处理工艺中,O3的最佳质量浓度和接触氧化时间分别为150 mg/L和40 min,GAC的最佳吸附停留时间为40 min。在最优运行工况下,O3-GAC工艺深度处理混合化工废水二级出水对COD、难降解COD(NCOD)、UV254和色度的平均总去除率分别为69%、77%、65%和69%。  相似文献   

16.
如何经济、有效地去除难降解有机物是当前水处理领域的难题之一。针对臭氧+FlopacTM工艺对化工废水难降解有机物的去除效果开展中试研究,并应用于具体工程实例。中试结果表明,增加臭氧投加量可有效提高化工废水的可生化性,当臭氧投加量由35 mg/L增加到75mg/L时,出水B/C值由0. 13提高到0. 17,对COD的去除率由27%提高到38%,出水COD浓度稳定在60 mg/L以下。实际工程运行数据表明,臭氧+Flopac~(TM)工艺可有效去除化工废水中的难降解有机物,出水水质稳定,臭氧投加量为65 mg/L、Flopac~(TM)平均滤速为6. 7 m/h时,COD去除率达到44%。  相似文献   

17.
针对石化废水难降解的问题,采用活性炭作为臭氧氧化单元的催化剂,并串联生物活性炭(BAC)单元,从水质变化、有机物分子质量分布和有机物结构等角度解析催化臭氧氧化对石化废水中难降解有机物的降解特性,以及对后续BAC单元出水水质的影响机理。结果表明,活性炭催化对臭氧氧化去除COD和UV254均有一定的促进作用,且对后续BAC单元去除COD和UV254的促进效果更明显,其中,对UV254的去除效果影响更大,当臭氧投加量为15和20 mg/L时,催化臭氧氧化对UV254的去除率比臭氧氧化分别提升9.4%和11.5%,后续BAC单元对UV254的去除率比无催化条件时分别提升17.0%和15.4%;催化条件对进水有机物分子质量分布的改变在O3投加量为15 mg/L时更明显,相比臭氧氧化,催化臭氧氧化对进水中不可吹扫有机碳(NPOC)的去除率提升5.4%,出水中分子质量<1 ku的NPOC比例增加6%;进水经催化臭氧氧化后,有机物结构显著改变,酚类、链烷烃类及不饱和...  相似文献   

18.
把化学氧化与生化后处理工艺相结合,用于山东某化学合成药厂二级生化出水的深度处理.首先在化学氧化单元用Fenton试剂氧化二级生化出水中难降解有机物,改善其可生化性;然后用SBR反应器对化学氧化单元出水进行生化后处理,使最终出水水质符合新排放标准的要求,同时最大限度地降低运行成本.结果表明:该化学合成药厂二级生化出水(COD、NH3-N分别为430、115 mg/L)经Fenton/SBR组合工艺深度处理后,其COD和NH3-N值均低于《化学合成类制药工业水污染物排放标准》( GB 21904-2008)的排放限值,且Fenton氧化单元的运行成本约为1.52元/m3,这对大多数企业来说还是能够承受的.  相似文献   

19.
李长江  张磊  赵永柱  王欣明 《市政技术》2013,31(4):137-139,158
某城市为降低污水处理厂二沉池出水COD质量浓度及色度,采用臭氧氧化法对其降解,并根据降解效果确定臭氧最佳投加量。实验结果表明:COD、BOD5、色度均随反应时间的增长而降低,臭氧氧化对COD、BOD5、色度的平均去除率分别为43.09%、61.64%、82.52%;臭氧氧化对氨氮的去除效果不明显,平均去除率仅为10.5%。最后根据实验结果确定出臭氧最佳投加量为15 g/m3。  相似文献   

20.
半程混凝/氧化/陶瓷膜工艺中膜污染的原位控制   总被引:1,自引:0,他引:1  
采用KMnO4、NaClO、O3和ClO2等四种氧化剂氧化与半程混凝/陶瓷膜超滤集成工艺处理微污染东江原水,研究氧化剂对去除有机物及原位控制膜污染的影响。结果表明,在四种氧化剂中臭氧对有机物的去除作用最为明显,投加量为3 mg/L时集成工艺对COD Mn和UV254的去除率分别达到60%、68%,与未投加时相比提高幅度较大,且臭氧投加量>1 mg/L后工艺出水中分子质量为1~5 ku的有机物含量明显降低,而200~500 u的有机物含量增加。其他三种氧化剂对有机物的去除作用弱于臭氧,在试验的投加量范围内,对UV254和COD Mn的去除率升幅分别小于8%和10%,且氧化剂对有机物的分子质量分布基本没有影响。但是,四种氧化剂均能使膜污染得到一定程度的减轻,氧化剂对UV254、COD Mn和分子质量分布三个层次的影响均能降低膜污染,并不需要改变有机物的分子质量分布,改变有机物的空间形态就可以减轻膜污染。氧化剂还能降低工艺出水的消毒副产物生成势,对THMFP和HAAFP的去除率相比未投加氧化剂时分别提高了10%和20%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号