首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用小型固定流化床装置研究了不同环烷烃催化裂解生成乙烯和丙烯的反应规律。结果表明,环烷烃的催化裂解反应中,无取代基的双环环烷烃比单环环烷烃更有利于生成乙烯和丙烯,但两者容易发生脱氢缩合反应;给电子诱导效应相对最强的正丙基环己烷比甲基环己烷和乙基环己烷更易生成正碳离子,利于生成乙烯和丙烯;对于含有2个取代基的环烷烃,取代基之间的距离越近,环烷烃环上的电子分布越不均匀,越容易生成正碳离子;具有较大环张力和较小动力学直径的甲基环戊烷比甲基环己烷更易催化裂解生成乙烯和丙烯。根据甲基环戊烷催化裂解的产物分析和分子模拟计算结果,推测H+优先进攻甲基环戊烷取代基的碳原子,进而发生电荷转移,形成C(1)五配位正碳离子。  相似文献   

2.
利用微型固定床反应器研究了C5~C8+汽油窄馏分的催化裂解反应特性。结果表明,汽油中的烯烃是生成丙烯的最佳前驱体,其反应活性和丙烯选择性均高于烷烃,丙烯产率主要由生成丙烯的裂解反应和丙烯二次转化反应之间的相对关系决定。在此基础上,按照原料和产物的馏程和化学组成进行集总划分,同时兼顾氢转移、环化、芳构化和缩合等重要的二次反应,建立了一种汽油催化裂解制丙烯反应动力学模型。该动力学模型可以对产物的产率以及化学组成进行预测和模拟。  相似文献   

3.
采用脉冲微型反应器和小型固定流化床催化裂解装置,研究了直馏石脑油中不同结构烃分子的裂解反应性能,考察了链烷烃与环烷烃的相互作用,以及催化材料对烃分子裂解性能的影响。结果表明:随着烷烃分子支链度的增加,C8烷烃的反应性能降低,丙烯选择性提高;链烷烃和具有烷基侧链的环烷烃是丙烯的主要来源,双环环烷烃对丙烯也有部分贡献,而芳香烃不易生成低碳烯烃;环烷烃的竞争吸附抑制了链烷烃的转化,而链烷烃在催化裂解过程中生成的碳正离子或烯烃提高了环烷烃的反应性能;与Beta分子筛相比,ZRP分子筛具有较狭窄孔道和较多的Brønsted酸中心,有利于正辛烷的质子化裂解,裂解产物中乙烯和丙烯产率高。  相似文献   

4.
从分子水平研究了重油催化裂解反应中原料性质的影响、丙烯生成反应化学和丙烯再转化反应化学,创新了重油催化裂解反应理论和知识。在重油催化裂解制丙烯反应中,原料氢含量和饱和烃含量是影响丙烯产率的重要指标,而原料烃分子结构与大小对丙烯产率的影响也很大;丙烯的生成来自重质原料一次裂解和中间产物馏分二次裂解反应的共同贡献;烷烃分子经五配位正碳离子引发链反应是导致干气选择性高而丙烯选择性低的主要原因;催化裂解产物中丙烯存在再转化反应。同时提出了催化裂解增产丙烯并抑制干气和焦炭生成的新技术,并在工业装置上得到了验证;与原技术相比,在相同原料油和操作条件下,其丙烯产率提高了90.29%,而焦炭产率降低了17.53%,干气与丙烯质量产率比降低了34.88%。  相似文献   

5.
从烃分子生成丙烯的反应出发,提出原料丙烯潜产率的分子水平模型,通过重油分子水平表征结合催化裂解反应化学研究,归纳出重油丙烯潜产率模型及其数学表达式。基于所构建的重油丙烯潜产率模型,获得催化裂解多产丙烯的较优烃分子类型,可为多产丙烯的原油、重油等原料的甄选以及对中间基等非理想原料的加氢改质提供参考方向。进一步对原油基属类型涵盖石蜡基、中间基和环烷基的几种减压蜡油及其加氢尾油的丙烯产率进行评价,结果表明,催化裂解丙烯实际产率和低碳烯烃产率均随着原料丙烯潜产率PPY指标的增大而相应提高,并且分别存在较好的线性相关性。  相似文献   

6.
C_4烯烃催化转化增产丙烯研究进展   总被引:16,自引:6,他引:10  
以C4烯烃与乙烯歧化反应生产丙烯工艺和C4烯烃选择性催化裂解生产丙烯工艺的技术路线为线索,从催化剂、反应工艺及其技术经济性等方面评述了C4烯烃催化转化增产丙烯反应的研究进展。指出由C4烯烃催化转化生产丙烯是油化结合增产丙烯、高效利用C4烯烃资源的重要途径,进而可提高炼化企业的经济效益。我国急需研发具有自主知识产权的高效C4烯烃催化转化增产丙烯技术。  相似文献   

7.
目的 开发C4烯烃催化裂解制丙烯工艺和催化剂制备工艺技术,完成小试和工业侧线试验。方法 采用固定床评价装置考查了催化剂配方、改性及工业条件对催化剂活性、选择性、稳定性能的影响。结果 以ZSM-5分子筛为活性组分的催化剂在C4烯烃转化制丙烯反应中具有较好的活性、选择性、稳定性和再生性,磷的引入未改变催化剂的晶型结构,但降低了催化剂酸性位点数量,并调节了催化剂的n(B酸)/n(L酸),随着磷负载量增加到5%(w),分子筛中磷与铝的相互作用逐渐增强,磷可以和骨架铝和非骨架铝相互作用。结论 C4烯烃的转化率达到80%以上,丙烯的选择性达到35%~45%,催化剂的单程寿命达到一个月以上,且经再生后,再生恢复率达95%。  相似文献   

8.
甲醇制烯烃过程中会副产大量C4+混合烃。利用副产C4+混合烃来高效生产乙烯和丙烯,提升乙烯和丙烯产率,成为煤制烯烃行业一个重要的研究方向。采用水热法合成了纳米级的HZSM-5分子筛,并在此基础上分别制备了P改性的HZSM-5分子筛催化剂(P/HZSM-5)和P-Mg复合改性的HZSM-5分子筛催化剂(P-Mg/HZSM-5)。采用XRD、SEM和N2吸/脱附等手段对分子筛和相应催化剂进行了表征,并在小型固定床反应器上分别进行了分子筛和分子筛催化剂催化C4+混合烃制低碳烯烃的催化性能测试。结果表明,在温度为520℃、压力为0.2 MPa、水蒸气空速为1000 h-1和原料混合气体积空速为100 h-1的条件下反应8 h,P-Mg/HZSM-5的乙烯和丙烯产率可达到46.2%,综合性能最优(乙烯选择性为28.6%,丙烯选择性为60.8%)。  相似文献   

9.
采用XRD、SEM、XRF、BET、NH3-TPD等方法表征USY、Beta、ZSM-5、ZSM-22、SAPO-41和SAPO-34分子筛的物相、组成、结构和酸性,并采用脉冲微反技术考察这些分子筛催化甲醇转化反应活性及烃类产物选择性随反应温度的变化。结果表明,三维十二元环的USY和Beta分子筛的甲醇转化催化活性最高,其次为二维十元环的ZSM-5分子筛,一维十元环的ZSM-22分子筛最低。分子筛的孔结构与孔径尺寸具有择形效应,与反应温度共同影响高选择性烃类产物的碳链长度。大孔分子筛在反应温度450℃以下时的C4 烃选择性最高;在反应温度400℃以上时,中孔ZSM-5、ZSM-22和SAPO-41分子筛的C3烃选择性最佳,小孔SAPO-34分子筛的C3烃和C2烃选择性最高。随着反应温度升高,高选择性烃产物的碳数降低。ZSM-5和SAPO-34分子筛是特别适合于甲醇制丙烯和乙烯的择形催化剂,这2种分子筛在催化选择性方面还具有优异的升温特性,在400~550℃范围,随着反应温度升高,产物中乙烯和丙烯的总选择性提高,副产物中丙烷、C4、C5和C6+烃的选择性降低,甲烷选择性略有增加。  相似文献   

10.
为了解决石脑油中正戊烷难以高效催化裂解为低碳烯烃的问题,先采用Aspen Plus模拟软件对正戊烷的催化裂解反应进行热力学平衡分析,然后考察分子筛类型对正戊烷催化裂解的低碳烯烃收率和选择性的影响规律。对正戊烷的催化裂解反应进行热力学分析的结果表明,当反应温度高于650 ℃时,丙烯和乙烯的质量比m(C3H6)/m(C2H4)<1,且低碳烯烃(C2H4+C3H6+C4H8)的收率开始增速缓慢。因此,综合考虑m(C3H6)/m(C2H4)和低碳烯烃收率,选择在反应温度650 ℃下考察正戊烷在不同类型分子筛上的催化裂解反应性能。结果表明:在MTT分子筛上催化裂解的低碳烯烃选择性较高,在温度为650 ℃、压力为0.1MPa、MHSV为540 h-1的反应条件下,正戊烷在MTT分子筛上催化裂解的低碳烯烃(C2H4+C3H6+C4H8)选择性为55.21%。通过对催化裂解过程的裂解和氢转移反应的分析,表明小孔径的MTT分子筛能够抑制双分子反应,包括双分子裂解反应和双分子氢转移反应,从而提高低碳烯烃的选择性。  相似文献   

11.
 在固定流化床催化裂化实验装置上,考察了重油催化裂解反应条件下丙烯的反应性能。结果发现,丙烯在重油催化裂解反应条件下是一种化学性质活泼的物质;可以通过催化反应转化为乙烯、丙烷、丁烯、汽油馏分中的芳烃和烯烃等反应产物。在脉冲微反实验装置上,通过对中间反应产物的捕捉,提出了丙烯的低聚反应和低聚产物的再裂解反应和芳构化反应以及丙烯的氢转移反应是丙烯转化的主要反应路径。其中, 丙烯的低聚反应和低聚产物的丙裂解反应使丙烯转化为碳数大于3和小于3的烯烃; 低聚产物的芳构化反应使丙烯间接转化为芳烃; 氢转移反应使丙烯转化为丙烷。  相似文献   

12.
重油催化热裂解制取乙烯和丙烯的研究   总被引:22,自引:1,他引:21  
本文探讨了重油催化热裂解制取乙烯和丙烯的反应机理,认为选择L酸中心多,且氢转移活性低的分子筛催化剂可以多产乙烯,并同时生成大量的丙烯。根据这个反应机理选取了3种新型分子筛催化剂。试验结果表明3种催化剂都具有较高的乙烯和丙烯选择性。同时还考察了不同性质原料油的催化热裂解反应结果,并研究了反应温度、反应时间和注水量等反应条件对乙烯和丙烯产率的影响。在小型固定流化床反应装置上,在典型的催化热裂解反应条件  相似文献   

13.
专利信息     
催化裂解生产乙烯丙烯的方法;提高丙烯乙烯选择性的方法;提高丙烯、乙烯收率的方法;C4-C12烯烃催化裂解制备丙烯的方法;C4烯烃催化裂解生产丙烯的方法;用于流化床烯烃催化裂解生产丙烯、乙烯的方法。  相似文献   

14.
HZSM-5分子筛是目前较适宜的催化裂解催化剂,但它的微孔特性限制了反应物或产物的高效扩散传质,导致催化效率下降;且HZSM-5分子筛酸分布不均匀,使生成的小分子产物乙烯和丙烯在强酸性位点继续发生聚合-脱氢-环化-芳构化-结焦等副反应,进而生成积碳引起催化剂失活。因此,对HZSM-5分子筛的酸性质或结构进行改性是提高催化裂解反应中低碳烯烃收率和催化剂稳定性的关键。从催化裂解反应机理、HZSM-5分子筛酸性质和结构调控、复合分子筛制备、双功能催化剂构建等方面详细总结了烃类(C4~C8)催化裂解制低碳烯烃的研究进展,旨在为构建催化裂解性能更优异的HZSM-5催化剂提供指导。  相似文献   

15.
利用自制催化剂,以C4馏分(简称C4)为原料,在小型固定床装置上进行加氢试验,结果表明,经加氢处理后,C4中的烯烃质量分数降至2.32%。经蒸汽裂解模拟评价,加氢C4裂解的三烯(乙烯+丙烯+丁二烯)收率达到48.16%~50.94%。对加氢C4作为乙烯原料进行了简单的经济性分析,就三烯收率而言,1 t 加氢C4与0.917 t乙烯原料油相当,表明加氢C4是较好的乙烯原料。  相似文献   

16.
碳四烯烃催化裂解制低碳烯烃反应性能的研究   总被引:19,自引:4,他引:15  
以ZSM-5分子筛为催化剂,1-丁烯为碳四烯烃模型化合物,考察温度对烯烃催化裂解制丙烯、乙烯反应性能的影响。结果表明,空速0.8h-1时,丙烯收率在580℃附近出现最大值,乙烯收率随温度升高而呈线性增加。同时,碳四烯烃催化裂解机理分析指出,丁烯裂解过程主要经历异构化、聚合、裂解的反应历程,并通过数据演算对机理网络进行了验证,取得了较好的一致性。  相似文献   

17.
用吉布斯自由能最小原理法对C2~C5烯烃构成的热力学网络进行了平衡状态的计算,并与1-丁烯及混合碳四烃在ZSM-5分子筛催化剂上的催化裂解实验结果进行了比较。结果表明:在ZSM-5分子筛催化剂上,不管进料是1-丁烯还是混合碳四烃,裂解产物中C2~C5烯烃收率随温度的变化趋势同热力学规律一致,即随温度升高乙烯产率不断升高,而丙烯的产率在630~650℃达到最大值。推荐实现最大化丙烯收率的温度范围为630-650℃。  相似文献   

18.
以高硅铝比ZSM-5分子筛为主要原料,经过成型和表面修饰过程制备催化剂,用于甲基叔丁基醚(MTBE)催化裂解反应。采用XRD、氮吸脱附和NH_3-TPD等表征方法研究了ZSM-5分子筛和催化剂的物理化学特征。实验结果表明,在催化剂的作用下,温度高于400℃时,MTBE直接裂解反应产物包括乙烯、丙烯、丁烯、C_1~C_4烷烃、C_5以上烃类和水。MTBE催化裂解反应中,丙烯和乙烯的产率随着反应温度的升高而增加。酸性中心是MTBE催化裂解反应的活性位,但是催化剂表面酸中心数量过多或酸性过强均可导致丙烯和乙烯收率降低。在500℃、0.05 MPa、质量空速16h~(-1)的条件下,MTBE可以完全转化,丙烯产率可达20.3%,乙烯产率可达5.3%。  相似文献   

19.
重油催化裂解过程中的丙烯生成规律研究   总被引:2,自引:0,他引:2  
在实验室微型固定床装置上,考察了重油催化裂解过程中的裂解反应规律;通过分析正碳离子的生成与裂解反应特点,探讨了丙烯的生成规律。结果表明,转化率小于80%时的裂解反应,生成的正碳离子可高效裂解为丙烯,对丙烯产率的贡献在90%以上,是丙烯的主要来源;转化率大于80%时的裂解反应,生成的正碳离子裂解为丙烯的能力则大大下降,同时生成大量的干气和焦炭等非理想产品。  相似文献   

20.
考察了ZSM23分子筛在晶化过程中的变化规律及其在催化碳四烯烃裂解制乙烯、丙烯反应中的催化性能。采用XRD,SEM,TG-DTA,FT-IR等技术对不同晶化时间合成的ZSM23分子筛的结构、表面酸性进行了表征。结果表明,晶化时间为48h时,分子筛晶体开始出现;晶化72h时,无定形物相基本消失。当晶化时间从72h再延长至120h,ZSM-23分子筛的晶粒大小、形貌基本保持不变。以晶化时间为72h的ZSM-23分子筛制备的催化剂,在催化碳四烯烃裂解制乙烯、丙烯的反应中表现出最佳的催化性能,其乙烯加丙烯的收率达36.97%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号