首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

2.
Many investigations are realized to establish the basic mechanical properties of vegetable fibre reinforced composites (VFRC) but not their shrinkage and creep behaviour. Some works have been realized to establish the shrinkage of cement mortar matrices reinforced with cellulose fibres, but very few results has been published with regards to shrinkage of VFRC with short sisal and coconut fibres. In this paper a concise summary of several investigations is presented to establish the influence of sisal and coconut fibres on the free and restrained plastic shrinkage, early drying shrinkage cracking, crack self-healing and long-term drying shrinkage of mortar matrices. The free and restrained shrinkage were studied by subjecting the specimens to wind speed of 0.4–0.5 m/s at 40 °C temperature for up to 280 min. The self healing of cracks of the VFRC was studied by using the same specimens as for the study of restrained shrinkage which were kept further in a controlled environment with 100% relative humidity and temperature of 21 °C for up to 40 days. Drying shrinkage tests were carried out at room temperature with about 41% relative humidity for 320 days. The influence of curing method, mix proportions and partial replacement of ordinary Portland cement (OPC) by ground granulated blast-furnace slag and silica fume on the drying shrinkage of VFRC was also investigated. Finally, based on the obtained results on drying shrinkage an equation using the recommendation of ACI model B3 was adjusted and compared well with the obtained experimental data.  相似文献   

3.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions.  相似文献   

4.
The mechanical properties (flexural strength, compressive strength, toughness and fracture energy) of steel microfiber reinforced reactive powder concrete (RPC) were investigated under different curing conditions (standard, autoclave and steam curing). Portland cement was replaced with ground granulated blast furnace slag (GGBFS) at 20%, 40% and 60%. Sintered bauxite, granite and quartz were used as aggregates in different series. The compressive strength of high volume GGBFS RPC was over 250 MPa after autoclaving. When an external pressure was applied during setting and hardening stages, compressive strength reached up to 400 MPa. The amount of silica fume can be decreased with increasing amount of GGBFS. SEM micrographs revealed the tobermorite after autoclave curing.  相似文献   

5.
The sustainable development of cement manufacturing requires extension of the raw material base, including large-tonnage waste. Hydrated mortar waste is a promising mineral resource for the production of Portland cements and alternative binders, such as alkali-activated slag cement. The influences of ground-hydrated mortar aged for 3 months on the properties of alkali-activated slag fresh and hardened pastes were performed. The results show that the properties are dependent on the concentration (2.5–60%), cement:sand ratio (1:1–3) and fineness (200–600 m2/kg) of the ground hydrated mortar; the alkali activator (sodium carbonate and sodium silicate); and the curing conditions (normal conditions and steam curing). The fresh paste properties that we considered in this study included the water requirement and the setting time; the hardened paste properties we considered were the water absorption, the density, and the compressive strength after 2, 7, 14, 28, 180 and 360 days of ageing. The ground hydrated mortar improved the early strength and the long-term strength of the alkali-activated slag paste and replaced the slag up to 50%. The factors that affecting the strength of the alkali-activated slag cement with ground hydrated mortar as an additive were, in order of influence, alkali activator type > curing conditions > cement:sand ratio > ground-hydrated mortar fineness.  相似文献   

6.
Most previous works on fly ash based geopolymer concrete focused on concretes subjected to heat curing. Development of geopolymer concrete that can set and harden at normal temperature will widen its application beyond precast concrete. This paper has focused on a study of fly ash based geopolymer concrete suitable for ambient curing condition. A small proportion of ordinary Portland cement (OPC) was added with low calcium fly ash to accelerate the curing of geopolymer concrete instead of using elevated heat. Samples were cured in room environment (about 23 °C and RH 65 ± 10%) until tested. Inclusion of OPC as little as 5% of total binder reduced the setting time to acceptable ranges and caused slight decrease of workability. The early-age compressive strength improved significantly with higher strength at the age of 28 days. Geopolymer microstructure showed considerable portion of calcium-rich aluminosilicate gel resulting from the addition of OPC.  相似文献   

7.
The particle size distributions of slag powder were investigated by Laser Scatter equipment. The influence of particle fractions of slag powder on the compressive strength of slag cement composed of 50% slag powder and 50% Portland cement was also studied by the method of grey correlation analysis. The results indicated that the volume fraction of particles 5–10 μm had a maximum positive effect on the mortar compressive strength of slag cement at 7 d and the volume fraction of particles 10–20 μm had a maximum positive effect on the mortar compressive strength at 28 d, whereas the volume fraction of particles larger than 20 μm had a negative effect on the mortar compressive strength at 7 and 28 d.  相似文献   

8.
The effect of carbonation curing on the mechanical properties and microstructure of concrete masonry units (CMU) with Portland limestone cement (PLC) as binder was examined. Slab samples, representing the web of a CMU, were initially cured at 25 °C and 50% relative humidity for durations up to 18 h. Carbonation was then carried out for 4 h in a chamber at a pressure of 0.1 MPa. Based on Portland limestone cement content, CO2 uptake of PLC concrete after 18 h of initial curing reached 18%. Carbonated and hydrated concretes showed comparable compressive strength at both early and late ages due to the 18-h initial curing. Carbonation reaction converted early hydration products to a crystalline microstructure and subsequent hydration transformed amorphous carbonates into more crystalline calcite. Portland limestone cement could replace Ordinary Portland Cement (OPC) in making equivalent CMUs which have shown similar carbon sequestration potential.  相似文献   

9.
The possibility of producing a reactive powder concrete (RPC) with low cement content was aimed in the scope of this study. Cement was replaced with class-C fly ash (FA) up to 60% for this purpose. Three different curing conditions (standard water curing, autoclave curing and steam curing) were applied to specimens. Two series of RPC composites were prepared with bauxite and granite aggregates. Mechanical properties such as compressive strength, splitting tensile strength, flexural strength and fracture energy of composites were investigated. Test results showed that, compressive strength of 200 MPa can be reached with low cement by using high-volume fly ash. Thermally treated specimens showed compressive strength beyond 250 MPa and high volume fly ash RPC have superior performance. Furthermore, compressive strength values reached up to 400 MPa with external pressure application during setting and hardening stages.  相似文献   

10.
《Composites Part B》2013,44(8):2907-2914
The possibility of producing a reactive powder concrete (RPC) with low cement content was aimed in the scope of this study. Cement was replaced with class-C fly ash (FA) up to 60% for this purpose. Three different curing conditions (standard water curing, autoclave curing and steam curing) were applied to specimens. Two series of RPC composites were prepared with bauxite and granite aggregates. Mechanical properties such as compressive strength, splitting tensile strength, flexural strength and fracture energy of composites were investigated. Test results showed that, compressive strength of 200 MPa can be reached with low cement by using high-volume fly ash. Thermally treated specimens showed compressive strength beyond 250 MPa and high volume fly ash RPC have superior performance. Furthermore, compressive strength values reached up to 400 MPa with external pressure application during setting and hardening stages.  相似文献   

11.
In this paper, influence of steam curing on the compressive strength, ultrasonic pulse velocity, water sorptivity, chloride ion permeability, and electrical resistivity of metakaolin and silica fume blended concretes were investigated. A total of seven mixtures containing various combinations of Portland cement (PC), silica fume (SF), and metakaolin (MK) were produced with 400 kg/m3 of total cementitious materials content and with a constant water/binder ratio of 0.44. For each mixture, concrete samples were either standard-cured in water at 23°C or steam-cured at 70°C maximum temperature over 17 h curing period. Test results revealed that steam curing enhanced the 1-day compressive strength and ultrasonic pulse velocity while leading to reduced long term strength in line with earlier findings. At the end of the water sorptivity, chloride ion permeability, and electrical resistivity tests, it was found that the steam-cured concretes had higher water sorptivity and chloride ion permeability, and lower electrical resistivity values compared to the standard cured specimens. Use of SF and MK as cementitious materials remarkably decreased the water sorptivity and chloride ion permeability of concretes, irrespective of the curing condition.  相似文献   

12.
This paper presents a detailed experimental study on the sulfate attack of Portland cement mortars, and the effectiveness of silica fume in controlling the damage arising from such attack. The test solutions used to supply the sulfate ions and cations were 5% sodium sulfate solution and 5% magnesium sulfate solution. Tap water was used as the reference solution. The main variables investigated in the study were the water/cementitious materials ratio, and the level of cement replacement. Compressive strength measured on 50 mm cubes was used to assess the changes in the mechanical properties of mortar specimens exposed to sulfate attack for 510 days. X-ray diffraction and differential scanning calorimetry were used to evaluate the microstructural nature of the sulfate attack. The test results showed that the presence of silica fume had a beneficial effect on the strength loss due to sodium sulfate attack. The best resistance to sodium sulfate attack was obtained with a SF replacement of 5–10%, but even then, a strength loss of 15–20% can be expected. On the other hand, mortars with silica fume were severely damaged in the magnesium sulfate environment. Further, the compressive strength loss actually increased with increasing SF content. The test results thus showed clearly that the use of SF in concrete exposed to magnesium sulfate solution is not recommended. The test results also showed that the w/cm ratio is the most critical parameter influencing the resistance of concrete to sulfate attack. All the tests reported in the study were carried out at 20 ± 1 °C.  相似文献   

13.
This paper presents an investigation of the compressive strength and the durability of lignite bottom ash geopolymer mortars in 3% sulfuric acid and 5% sodium sulfate solutions. Three finenesses of ground bottom ash viz., fine, medium and coarse bottom ash were used to make geopolymer mortars. Sodium silicate, sodium hydroxide and curing temperature of 75 °C for 48 h were used to activate the geopolymerization. The results were compared to those of Portland cement and high volume fly ash mortars. It was found that the fine bottom ash was more reactive and gave geopolymer mortars with higher compressive strengths than those of the coarser fly ashes. All bottom ash geopolymer mortars were less susceptible to the attack by sodium sulfate and sulfuric acid solutions than the traditional Portland cement mortars.  相似文献   

14.
This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings.  相似文献   

15.
This study investigated the flowability, compressive strength, heat of hydration, porosity and calcium hydroxide content of ultra-high-strength concrete (UHSC) with cement–silica fume–slag binder at 20 °C. The composition of the binder was designed using seven-batch factorial design method. The relationships between the binder composition and the properties were expressed in contours. Results showed that proper silica fume content could improve the flowability and compressive strength of UHSC, reduce the porosity and calcium hydroxide content of UHSC. Slag reduced the flowability, compressive strength, porosity, and calcium hydroxide content of UHSC to certain extent. The silica fume and slag demonstrated positive synergistic effects on the flowability and 3 d compressive strength, but have negative synergistic effects on the total heat of hydration, hydration heat when the time is infinitely long(P0), 56 d compressive strength, porosity and calcium hydroxide content of UHSC.  相似文献   

16.
Compressive strength of geopolymeric specimens produced by class C fly ash and granulated blast furnace slag aggregates has been studied. Four different independent factors comprising of aggregate content, sodium hydroxide concentration, curing time and curing temperature were considered as the variables. To attain the maximum possible accurate responses by means of the smallest amount of examinations, Taguchi design of experiment method was followed. By taking into account three levels for each factor, 9 series of experiments were conducted on the specimens at 2 and 7 days of water curing regime. For both considered regimes, a specimen with 30 weight percent of aggregate and sodium hydroxide concentration of 12 M cured at 90 °C for 16 h had the highest compressive strength. On account of reactivity between aggregates and the fly ash, the compressive strength was reached to 69.3 ± 5.3 MPa and 76.2 ± 3.6 MPa at 2 and 7 days of water curing, respectively. Fracture surface of specimens with the highest and the lowest strengths as well as effect of each considered factor on the compressive strength of the specimens were studied.  相似文献   

17.
In this study, the effect of incorporation of silica fume in enhancing strength development rate and durability characteristics of binary concretes containing a low reactivity slag has been investigated. Binary concretes studied included mixes containing slag at cement replacement levels of 15%, 30% and 50% and mixes containing silica fume at cement replacement levels of 2.5%, 5%, 7.5% and 10%. Ternary concretes included combinations of silica fume and slag at various cement replacement levels. The w/b ratio and total cementitious materials content were kept constant for all mixes at 0.38 and 420 kg/m3 respectively. Concrete mixes were evaluated for compressive strength, electrical resistance, chloride permeability (ASTM C1202 RCPT test) and chloride migration (AASHTO TP64 RCMT test), at various ages up to 180 days.The results show that simultaneous use of silica fume has only a moderate effect in improving the slow rate of strength gain of binary mixes containing low reactivity slag. However it improves their durability considerably. Using appropriate combination of low reactivity slag and silica fume, it is possible to obtain ternary mixes with 28 day strength comparable to the control mix and improve durability particularly in the long term. Ternary mixes also have the added advantage of reduced water demand.  相似文献   

18.
Fly ash geopolymer requires rather long heat curing to obtain reasonable strength development at an early age. However, the long heat curing period limits the application of the fly ash geopolymer. High strength development and a reduction in heat curing duration have been considered for energy saving. Therefore, this research proposed a process using 90-W microwave radiation for 5 min followed by conventional heat curing for high-calcium fly ash geopolymer. Results showed that the compressive strengths of geopolymer with microwave radiation followed by conventional heat curing were comparable to those of the control cured at 65 °C for 24 h. Microwave radiation gave the enhanced densification. In addition, SEM images showed that the gels formed on the fly ash particles owing to the promoted dissolution of amorphous phases from fly ash. This method accelerated the geopolymerization and gave the high compressive strength comparable to the conventional curing.  相似文献   

19.
Calcium carbide residue (CCR) is a by-product of the acetylene gas production and bagasse ash (BA) is a by-product obtained from the burning of bagasse for electricity generation in the sugar industry. The mixture between CCR contains a high proportion of calcium hydroxide, while BA is a pozzolanic material, can produce a pozzolanic reaction, resulting in the products similar to those obtained from the cement hydration process. Thus, it is possible to use a mixture of CCR and BA as a cementitious material to substitute for Portland cement in concrete. The results indicated that concrete made with CCR and BA mixtures and containing 90 kg/m3 of Portland cement gave the compressive strength of 32.7 MPa at 28 days. These results suggested that the use of ground CCR and ground BA mixtures as a binder could reduce Portland cement consumption by up to 70% compared to conventional concrete that requires 300 kg/m3 of Portland cement to achieve the same compressive strength. In addition, the mechanical properties of the alternative concrete including compressive strength, splitting tensile strength, and elastic modulus were similar to that of conventional concrete.  相似文献   

20.
Thirty-eight mix proportions of ordinary Portland cement-slag mortars (OSMs) were used to study the effects of temperature and relative humidity on strength. Three levels of slag (0%, 40%, and 50%) and different temperatures were used; the 50% level and heat curing of 60 °C for duration of 20 h were found to be the optimum. The optimum mortar’s strength at 3 and 7 days for the specimens cured in air were 55.0 and 62.0 MPa, respectively. The results show that for durations of 4–26 h, the strength of specimens cured in air is greater than those cured in water. This is a novelty with major advantages in arid areas. It was proved that more ettringite production at early ages resulted in higher early strengths. Comparison of curing regimes with different temperatures and the same relative humidity or different relative humidity and the same temperatures showed that higher strengths are attributed to higher temperatures and lower relative humidity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号